1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
use super::*;
use candle::{safetensors::SafeTensors, Device, Result, Tensor};
use std::path::PathBuf;
pub struct VarBuilder<'a> {
routing: HashMap<String, usize>,
safetensors: Vec<SafeTensors<'a>>,
device: Device,
}
impl<'a> VarBuilder<'a> {
pub fn new(safetensors: Vec<SafeTensors<'a>>, device: Device) -> Self {
let mut routing = HashMap::new();
for (index, sf) in safetensors.iter().enumerate() {
for k in sf.names() {
routing.insert(k.to_string(), index);
}
}
Self {
safetensors,
device,
routing,
}
}
pub fn get(&self, tensor_name: &str) -> Result<Tensor> {
// Unwrap or 0 just to let the proper error flow.
let index = self.routing.get(tensor_name).unwrap_or(&0);
self.safetensors[*index]
.tensor(tensor_name, &self.device)?
.to_dtype(DTYPE)
}
}
impl Linear {
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self> {
let weight = vb.get(&format!("{prefix}.weight"))?;
Ok(Self::new(weight))
}
fn load_multi(prefixes: &[&str], vb: &VarBuilder) -> Result<Self> {
let weights: Vec<_> = prefixes
.iter()
.map(|p| vb.get(&format!("{p}.weight")).unwrap())
.collect();
let weight = Tensor::cat(&weights, 0)?;
Ok(Self::new(weight))
}
}
impl RmsNorm {
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self> {
let scale = vb.get(&format!("{prefix}.weight"))?;
Ok(Self::new(scale))
}
}
impl CausalSelfAttention {
fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result<Self> {
let c_attn = Linear::load_multi(
&[
&format!("{prefix}.q_proj"),
&format!("{prefix}.k_proj"),
&format!("{prefix}.v_proj"),
],
vb,
)?;
let o_proj = Linear::load(&format!("{prefix}.o_proj"), vb)?;
Ok(Self::new(c_attn, o_proj, config.n_head, cache))
}
}
impl Mlp {
fn load(prefix: &str, vb: &VarBuilder) -> Result<Self> {
let c_fc1 = Linear::load(&format!("{prefix}.gate_proj"), vb)?;
let c_fc2 = Linear::load(&format!("{prefix}.up_proj"), vb)?;
let c_proj = Linear::load(&format!("{prefix}.down_proj"), vb)?;
Ok(Self::new(c_fc1, c_fc2, c_proj))
}
}
impl Block {
fn load(prefix: &str, vb: &VarBuilder, cache: &Cache, config: &Config) -> Result<Self> {
let attn = CausalSelfAttention::load(&format!("{prefix}.self_attn"), vb, cache, config)?;
let mlp = Mlp::load(&format!("{prefix}.mlp"), vb)?;
let input_layernorm = RmsNorm::load(&format!("{prefix}.input_layernorm"), vb)?;
let post_attention_layernorm =
RmsNorm::load(&format!("{prefix}.post_attention_layernorm"), vb)?;
Ok(Self::new(
input_layernorm,
attn,
post_attention_layernorm,
mlp,
))
}
}
impl Llama {
pub fn load(
device: &Device,
filenames: &[PathBuf],
cache: &Cache,
config: &Config,
) -> Result<Self> {
let handles: Vec<_> = filenames
.iter()
.map(|f| unsafe { candle::safetensors::MmapedFile::new(f) })
.collect::<Result<Vec<_>>>()?;
let tensors: Vec<_> = handles
.iter()
.map(|h| h.deserialize())
.collect::<Result<Vec<_>>>()?;
let vb = VarBuilder::new(tensors, device.clone());
let embedding = vb.get("model.embed_tokens.weight")?;
let wte = Embedding::new(embedding);
let lm_head = Linear::load("lm_head", &vb)?;
let norm = RmsNorm::load("model.norm", &vb)?;
let blocks: Vec<_> = (0..config.n_layer)
.map(|i| Block::load(&format!("model.layers.{i}"), &vb, cache, config).unwrap())
.collect();
Ok(Self::new(wte, blocks, norm, lm_head))
}
}
|