summaryrefslogtreecommitdiff
path: root/candle-core/examples/tensor-tools.rs
blob: d06b30d106fa908d00091fb95403a1b0955c6cb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
use candle_core::quantized::{gguf_file, k_quants, QTensor};
use candle_core::{Device, Result, Tensor};
use clap::{Parser, Subcommand, ValueEnum};
use rayon::prelude::*;

#[derive(ValueEnum, Debug, Clone)]
enum QuantizationMode {
    /// The default quantization includes all 2d tensors, except the output tensor which always
    /// uses Q6_K.
    Llama,
}

impl QuantizationMode {
    fn quantize(
        &self,
        name: &str,
        tensor: QTensor,
        default: fn(&Tensor) -> Result<QTensor>,
    ) -> Result<QTensor> {
        match self {
            Self::Llama => {
                // Same behavior as the llama.cpp quantization.
                let should_quantize = name.ends_with(".weight") && tensor.rank() == 2;
                if should_quantize {
                    let tensor = tensor.dequantize(&Device::Cpu)?;
                    if name == "output.weight" {
                        QTensor::quantize::<k_quants::BlockQ6K>(&tensor)
                    } else {
                        default(&tensor)
                    }
                } else {
                    Ok(tensor)
                }
            }
        }
    }
}

#[derive(ValueEnum, Debug, Clone)]
enum Quantization {
    #[value(name = "q4_0")]
    Q4_0,
    #[value(name = "q4_1")]
    Q4_1,
    #[value(name = "q5_0")]
    Q5_0,
    #[value(name = "q5_1")]
    Q5_1,
    #[value(name = "q8_0")]
    Q8_0,
    #[value(name = "q8_1")]
    Q8_1,
    Q2k,
    Q3k,
    Q4k,
    Q5k,
    Q6k,
    Q8k,
    F16,
    F32,
}

#[derive(ValueEnum, Debug, Clone)]
enum Format {
    Safetensors,
    Npz,
    Ggml,
    Gguf,
    Pth,
    Pickle,
}

impl Format {
    fn infer<P: AsRef<std::path::Path>>(p: P) -> Option<Self> {
        p.as_ref()
            .extension()
            .and_then(|e| e.to_str())
            .and_then(|e| match e {
                // We don't infer any format for .bin as it can be used for ggml/gguf or pytorch.
                "safetensors" | "safetensor" => Some(Self::Safetensors),
                "npz" => Some(Self::Npz),
                "pth" | "pt" => Some(Self::Pth),
                "ggml" => Some(Self::Ggml),
                "gguf" => Some(Self::Gguf),
                _ => None,
            })
    }
}

#[derive(Subcommand, Debug, Clone)]
enum Command {
    Ls {
        files: Vec<std::path::PathBuf>,

        /// The file format to use, if unspecified infer from the file extension.
        #[arg(long, value_enum)]
        format: Option<Format>,

        /// Enable verbose mode.
        #[arg(short, long)]
        verbose: bool,
    },

    Quantize {
        /// The input file, in gguf format.
        in_file: Vec<std::path::PathBuf>,

        /// The output file, in gguf format.
        #[arg(long)]
        out_file: std::path::PathBuf,

        /// The quantization schema to apply.
        #[arg(long, value_enum)]
        quantization: Quantization,

        /// Which tensor to quantize.
        #[arg(long, value_enum, default_value_t = QuantizationMode::Llama)]
        mode: QuantizationMode,
    },
}

#[derive(Parser, Debug, Clone)]
struct Args {
    #[command(subcommand)]
    command: Command,
}

fn run_ls(file: &std::path::PathBuf, format: Option<Format>, verbose: bool) -> Result<()> {
    let format = match format {
        Some(format) => format,
        None => match Format::infer(file) {
            Some(format) => format,
            None => {
                println!(
                    "{file:?}: cannot infer format from file extension, use the --format flag"
                );
                return Ok(());
            }
        },
    };
    match format {
        Format::Npz => {
            let tensors = candle_core::npy::NpzTensors::new(file)?;
            let mut names = tensors.names();
            names.sort();
            for name in names {
                let shape_dtype = match tensors.get_shape_and_dtype(name) {
                    Ok((shape, dtype)) => format!("[{shape:?}; {dtype:?}]"),
                    Err(err) => err.to_string(),
                };
                println!("{name}: {shape_dtype}")
            }
        }
        Format::Safetensors => {
            let tensors = unsafe { candle_core::safetensors::MmapedSafetensors::new(file)? };
            let mut tensors = tensors.tensors();
            tensors.sort_by(|a, b| a.0.cmp(&b.0));
            for (name, view) in tensors.iter() {
                let dtype = view.dtype();
                let dtype = match candle_core::DType::try_from(dtype) {
                    Ok(dtype) => format!("{dtype:?}"),
                    Err(_) => format!("{dtype:?}"),
                };
                let shape = view.shape();
                println!("{name}: [{shape:?}; {dtype}]")
            }
        }
        Format::Pth => {
            let mut tensors = candle_core::pickle::read_pth_tensor_info(file, verbose)?;
            tensors.sort_by(|a, b| a.name.cmp(&b.name));
            for tensor_info in tensors.iter() {
                println!(
                    "{}: [{:?}; {:?}]",
                    tensor_info.name,
                    tensor_info.layout.shape(),
                    tensor_info.dtype,
                );
                if verbose {
                    println!("    {:?}", tensor_info);
                }
            }
        }
        Format::Pickle => {
            let file = std::fs::File::open(file)?;
            let mut reader = std::io::BufReader::new(file);
            let mut stack = candle_core::pickle::Stack::empty();
            stack.read_loop(&mut reader)?;
            for (i, obj) in stack.stack().iter().enumerate() {
                println!("{i} {obj:?}");
            }
        }
        Format::Ggml => {
            let mut file = std::fs::File::open(file)?;
            let content = candle_core::quantized::ggml_file::Content::read(&mut file)?;
            let mut tensors = content.tensors.into_iter().collect::<Vec<_>>();
            tensors.sort_by(|a, b| a.0.cmp(&b.0));
            for (name, qtensor) in tensors.iter() {
                println!("{name}: [{:?}; {:?}]", qtensor.shape(), qtensor.dtype());
            }
        }
        Format::Gguf => {
            let mut file = std::fs::File::open(file)?;
            let content = gguf_file::Content::read(&mut file)?;
            if verbose {
                let mut metadata = content.metadata.into_iter().collect::<Vec<_>>();
                metadata.sort_by(|a, b| a.0.cmp(&b.0));
                println!("metadata entries ({})", metadata.len());
                for (key, value) in metadata.iter() {
                    println!("  {key}: {value:?}");
                }
            }
            let mut tensors = content.tensor_infos.into_iter().collect::<Vec<_>>();
            tensors.sort_by(|a, b| a.0.cmp(&b.0));
            for (name, info) in tensors.iter() {
                println!("{name}: [{:?}; {:?}]", info.shape, info.ggml_dtype);
            }
        }
    }
    Ok(())
}

fn run_quantize_safetensors(
    in_files: &[std::path::PathBuf],
    out_file: std::path::PathBuf,
    q: Quantization,
) -> Result<()> {
    let mut out_file = std::fs::File::create(out_file)?;
    let mut tensors = std::collections::HashMap::new();
    for in_file in in_files.iter() {
        let in_tensors = candle_core::safetensors::load(in_file, &Device::Cpu)?;
        tensors.extend(in_tensors)
    }
    println!("tensors: {}", tensors.len());

    let quantize_fn = match q {
        Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
        Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
        Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
        Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
        Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
        Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
        Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
        Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
        Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
        Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
        Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
        Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
        Quantization::F16 => QTensor::quantize::<half::f16>,
        Quantization::F32 => QTensor::quantize::<f32>,
    };
    let block_size = match q {
        Quantization::Q4_0 => k_quants::QK4_0,
        Quantization::Q4_1 => k_quants::QK4_1,
        Quantization::Q5_0 => k_quants::QK5_0,
        Quantization::Q5_1 => k_quants::QK5_1,
        Quantization::Q8_0 => k_quants::QK8_0,
        Quantization::Q8_1 => k_quants::QK8_1,
        Quantization::Q2k
        | Quantization::Q3k
        | Quantization::Q4k
        | Quantization::Q5k
        | Quantization::Q6k
        | Quantization::Q8k => k_quants::QK_K,
        Quantization::F16 | Quantization::F32 => 1,
    };

    let qtensors = tensors
        .into_par_iter()
        .map(|(name, tensor)| {
            let should_quantize = tensor.rank() == 2 && tensor.dim(1)? % block_size == 0;
            println!("  quantizing {name} {tensor:?} {should_quantize}");
            let tensor = if should_quantize {
                quantize_fn(&tensor)?
            } else {
                QTensor::quantize::<f32>(&tensor)?
            };
            Ok((name, tensor))
        })
        .collect::<Result<Vec<_>>>()?;
    let qtensors = qtensors
        .iter()
        .map(|(k, v)| (k.as_str(), v))
        .collect::<Vec<_>>();
    gguf_file::write(&mut out_file, &[], &qtensors)?;
    Ok(())
}

fn run_quantize(
    in_files: &[std::path::PathBuf],
    out_file: std::path::PathBuf,
    q: Quantization,
    qmode: QuantizationMode,
) -> Result<()> {
    if in_files.is_empty() {
        candle_core::bail!("no specified input files")
    }
    if let Some(extension) = out_file.extension() {
        if extension == "safetensors" {
            candle_core::bail!("the generated file cannot use the safetensors extension")
        }
    }
    if let Some(extension) = in_files[0].extension() {
        if extension == "safetensors" {
            return run_quantize_safetensors(in_files, out_file, q);
        }
    }

    if in_files.len() != 1 {
        candle_core::bail!("only a single in-file can be used when quantizing gguf files")
    }

    // Open the out file early so as to fail directly on missing directories etc.
    let mut out_file = std::fs::File::create(out_file)?;
    let mut in_ = std::fs::File::open(&in_files[0])?;
    let content = gguf_file::Content::read(&mut in_)?;
    println!("tensors: {}", content.tensor_infos.len());

    let quantize_fn = match q {
        Quantization::Q4_0 => QTensor::quantize::<k_quants::BlockQ4_0>,
        Quantization::Q4_1 => QTensor::quantize::<k_quants::BlockQ4_1>,
        Quantization::Q5_0 => QTensor::quantize::<k_quants::BlockQ5_0>,
        Quantization::Q5_1 => QTensor::quantize::<k_quants::BlockQ5_1>,
        Quantization::Q8_0 => QTensor::quantize::<k_quants::BlockQ8_0>,
        Quantization::Q8_1 => QTensor::quantize::<k_quants::BlockQ8_1>,
        Quantization::Q2k => QTensor::quantize::<k_quants::BlockQ2K>,
        Quantization::Q3k => QTensor::quantize::<k_quants::BlockQ3K>,
        Quantization::Q4k => QTensor::quantize::<k_quants::BlockQ4K>,
        Quantization::Q5k => QTensor::quantize::<k_quants::BlockQ5K>,
        Quantization::Q6k => QTensor::quantize::<k_quants::BlockQ6K>,
        Quantization::Q8k => QTensor::quantize::<k_quants::BlockQ8K>,
        Quantization::F16 => QTensor::quantize::<half::f16>,
        Quantization::F32 => QTensor::quantize::<f32>,
    };

    let qtensors = content
        .tensor_infos
        .par_iter()
        .map(|(name, _)| {
            println!("  quantizing {name}");
            let mut in_file = std::fs::File::open(&in_files[0])?;
            let tensor = content.tensor(&mut in_file, name)?;
            let tensor = qmode.quantize(name, tensor, quantize_fn)?;
            Ok((name, tensor))
        })
        .collect::<Result<Vec<_>>>()?;
    let qtensors = qtensors
        .iter()
        .map(|(k, v)| (k.as_str(), v))
        .collect::<Vec<_>>();

    let metadata = content
        .metadata
        .iter()
        .map(|(k, v)| (k.as_str(), v))
        .collect::<Vec<_>>();
    gguf_file::write(&mut out_file, metadata.as_slice(), &qtensors)?;
    Ok(())
}

fn main() -> anyhow::Result<()> {
    let args = Args::parse();
    match args.command {
        Command::Ls {
            files,
            format,
            verbose,
        } => {
            let multiple_files = files.len() > 1;
            for file in files.iter() {
                if multiple_files {
                    println!("--- {file:?} ---");
                }
                run_ls(file, format.clone(), verbose)?
            }
        }
        Command::Quantize {
            in_file,
            out_file,
            quantization,
            mode,
        } => run_quantize(&in_file, out_file, quantization, mode)?,
    }
    Ok(())
}