1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
use crate::{Error, Tensor};
use std::ops::{
Bound, Range, RangeBounds, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive,
};
impl Tensor {
/// Intended to be use by the trait `.i()`
///
/// ```
/// # use candle::{Tensor, DType, Device, IndexOp};
/// let a = Tensor::zeros((2, 3), DType::F32, &Device::Cpu)?;
///
/// let c = a.i(0..1)?;
/// assert_eq!(c.shape().dims(), &[1, 3]);
///
/// let c = a.i(0)?;
/// assert_eq!(c.shape().dims(), &[3]);
///
/// let c = a.i((.., ..2) )?;
/// assert_eq!(c.shape().dims(), &[2, 2]);
///
/// let c = a.i((.., ..=2))?;
/// assert_eq!(c.shape().dims(), &[2, 3]);
///
/// # Ok::<(), candle::Error>(())
/// ```
fn index(&self, indexers: &[TensorIndexer]) -> Result<Self, Error> {
let mut x = self.clone();
let dims = self.shape().dims();
let mut current_dim = 0;
for (i, indexer) in indexers.iter().enumerate() {
x = match indexer {
TensorIndexer::Select(n) => x.get(*n)?,
TensorIndexer::Narrow(left_bound, right_bound) => {
let start = match left_bound {
Bound::Included(n) => *n,
Bound::Excluded(n) => *n + 1,
Bound::Unbounded => 0,
};
let stop = match right_bound {
Bound::Included(n) => *n + 1,
Bound::Excluded(n) => *n,
Bound::Unbounded => dims[i],
};
let len = stop - start;
let out = x.narrow(current_dim, start, stop - start)?;
current_dim += 1;
out
}
};
}
Ok(x)
}
}
#[derive(Debug, Clone)]
/// Generic structure used to index a slice of the tensor
pub enum TensorIndexer {
Select(usize),
/// This is a regular slice, purely indexing a chunk of the tensor
Narrow(Bound<usize>, Bound<usize>),
// IndexSelect(Tensor),
}
impl From<usize> for TensorIndexer {
fn from(index: usize) -> Self {
TensorIndexer::Select(index)
}
}
// impl From<&[usize]> for TensorIndexer {
// fn from(index: &[usize]) -> Self {
// let tensor = index.into();
// TensorIndexer::IndexSelect(tensor)
// }
// }
//
// impl From<Vec<usize>> for TensorIndexer {
// fn from(index: Vec<usize>) -> Self {
// let tensor = Tensor::of_slice(&index);
// TensorIndexer::IndexSelect(tensor)
// }
// }
macro_rules! impl_from_range {
($range_type:ty) => {
impl From<$range_type> for TensorIndexer {
fn from(range: $range_type) -> Self {
use std::ops::Bound::*;
let start = match range.start_bound() {
Included(idx) => Included(*idx),
Excluded(idx) => Excluded(*idx),
Unbounded => Unbounded,
};
let end = match range.end_bound() {
Included(idx) => Included(*idx),
Excluded(idx) => Excluded(*idx),
Unbounded => Unbounded,
};
TensorIndexer::Narrow(start, end)
}
}
};
}
impl_from_range!(Range<usize>);
impl_from_range!(RangeFrom<usize>);
impl_from_range!(RangeFull);
impl_from_range!(RangeInclusive<usize>);
impl_from_range!(RangeTo<usize>);
impl_from_range!(RangeToInclusive<usize>);
/// Trait used to implement multiple signatures for ease of use of the slicing
/// of a tensor
pub trait IndexOp<T> {
/// Returns a slicing iterator which are the chunks of data necessary to
/// reconstruct the desired tensor.
fn i(&self, index: T) -> Result<Tensor, Error>;
}
impl<T> IndexOp<T> for Tensor
where
T: Into<TensorIndexer>,
{
fn i(&self, index: T) -> Result<Tensor, Error> {
self.index(&[index.into()])
}
}
impl<A> IndexOp<(A,)> for Tensor
where
A: Into<TensorIndexer>,
{
fn i(&self, index: (A,)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
self.index(&[idx_a])
}
}
impl<A, B> IndexOp<(A, B)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
{
fn i(&self, index: (A, B)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
let idx_b = index.1.into();
self.index(&[idx_a, idx_b])
}
}
impl<A, B, C> IndexOp<(A, B, C)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
C: Into<TensorIndexer>,
{
fn i(&self, index: (A, B, C)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
let idx_b = index.1.into();
let idx_c = index.2.into();
self.index(&[idx_a, idx_b, idx_c])
}
}
impl<A, B, C, D> IndexOp<(A, B, C, D)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
C: Into<TensorIndexer>,
D: Into<TensorIndexer>,
{
fn i(&self, index: (A, B, C, D)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
let idx_b = index.1.into();
let idx_c = index.2.into();
let idx_d = index.3.into();
self.index(&[idx_a, idx_b, idx_c, idx_d])
}
}
impl<A, B, C, D, E> IndexOp<(A, B, C, D, E)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
C: Into<TensorIndexer>,
D: Into<TensorIndexer>,
E: Into<TensorIndexer>,
{
fn i(&self, index: (A, B, C, D, E)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
let idx_b = index.1.into();
let idx_c = index.2.into();
let idx_d = index.3.into();
let idx_e = index.4.into();
self.index(&[idx_a, idx_b, idx_c, idx_d, idx_e])
}
}
impl<A, B, C, D, E, F> IndexOp<(A, B, C, D, E, F)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
C: Into<TensorIndexer>,
D: Into<TensorIndexer>,
E: Into<TensorIndexer>,
F: Into<TensorIndexer>,
{
fn i(&self, index: (A, B, C, D, E, F)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
let idx_b = index.1.into();
let idx_c = index.2.into();
let idx_d = index.3.into();
let idx_e = index.4.into();
let idx_f = index.5.into();
self.index(&[idx_a, idx_b, idx_c, idx_d, idx_e, idx_f])
}
}
impl<A, B, C, D, E, F, G> IndexOp<(A, B, C, D, E, F, G)> for Tensor
where
A: Into<TensorIndexer>,
B: Into<TensorIndexer>,
C: Into<TensorIndexer>,
D: Into<TensorIndexer>,
E: Into<TensorIndexer>,
F: Into<TensorIndexer>,
G: Into<TensorIndexer>,
{
fn i(&self, index: (A, B, C, D, E, F, G)) -> Result<Tensor, Error> {
let idx_a = index.0.into();
let idx_b = index.1.into();
let idx_c = index.2.into();
let idx_d = index.3.into();
let idx_e = index.4.into();
let idx_f = index.5.into();
let idx_g = index.6.into();
self.index(&[idx_a, idx_b, idx_c, idx_d, idx_e, idx_f, idx_g])
}
}
|