summaryrefslogtreecommitdiff
path: root/candle-core/src/quantized/avx.rs
blob: 664f7653ee292163d09057c18d6fb08b312b4a5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
use super::k_quants::{
    BlockQ2K, BlockQ3K, BlockQ4K, BlockQ4_0, BlockQ5K, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K,
};
use crate::Result;
use byteorder::{ByteOrder, LittleEndian};
use half::f16;

#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;

#[inline(always)]
pub(crate) unsafe fn sum_i16_pairs_float(x: __m256i) -> __m256 {
    let ones = _mm256_set1_epi16(1);
    let summed_pairs = _mm256_madd_epi16(ones, x);
    _mm256_cvtepi32_ps(summed_pairs)
}

#[inline(always)]
pub(crate) unsafe fn mul_sum_us8_pairs_float(ax: __m256i, sy: __m256i) -> __m256 {
    let dot = _mm256_maddubs_epi16(ax, sy);
    sum_i16_pairs_float(dot)
}

#[inline(always)]
pub(crate) unsafe fn hsum_float_8(x: __m256) -> f32 {
    let res = _mm256_extractf128_ps(x, 1);
    let res = _mm_add_ps(res, _mm256_castps256_ps128(x));
    let res = _mm_add_ps(res, _mm_movehl_ps(res, res));
    let res = _mm_add_ss(res, _mm_movehdup_ps(res));
    _mm_cvtss_f32(res)
}

#[inline(always)]
pub(crate) unsafe fn bytes_from_nibbles_32(rsi: *const u8) -> __m256i {
    let tmp = _mm_loadu_si128(rsi as *const __m128i);
    let bytes = _mm256_insertf128_si256::<1>(_mm256_castsi128_si256(tmp), _mm_srli_epi16(tmp, 4));
    let low_mask = _mm256_set1_epi8(0xF);
    _mm256_and_si256(low_mask, bytes)
}

#[inline(always)]
pub(crate) unsafe fn mul_sum_i8_pairs_float(x: __m256i, y: __m256i) -> __m256 {
    let ax = _mm256_sign_epi8(x, x);
    let sy = _mm256_sign_epi8(y, x);
    mul_sum_us8_pairs_float(ax, sy)
}

#[inline(always)]
pub(crate) fn vec_dot_q4_0_q8_0(n: usize, xs: &[BlockQ4_0], ys: &[BlockQ8_0]) -> Result<f32> {
    let qk = QK8_0;
    if n % QK8_0 != 0 {
        crate::bail!("vec_dot_q4_0_q8_0: {n} is not divisible by {qk}")
    }
    unsafe {
        let mut acc = _mm256_setzero_ps();
        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = _mm256_set1_ps(f16::to_f32(x.d) * f16::to_f32(y.d));
            let bx = bytes_from_nibbles_32(x.qs.as_ptr());
            let off = _mm256_set1_epi8(8);
            let bx = _mm256_sub_epi8(bx, off);
            let by = _mm256_loadu_si256(y.qs.as_ptr() as *const __m256i);
            let q = mul_sum_i8_pairs_float(bx, by);
            acc = _mm256_fmadd_ps(d, q, acc);
        }
        Ok(hsum_float_8(acc))
    }
}

#[inline(always)]
pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> Result<f32> {
    let qk = QK8_0;
    if n % QK8_0 != 0 {
        crate::bail!("vec_dot_q8_0_q8_0: {n} is not divisible by {qk}")
    }
    unsafe {
        let mut acc = _mm256_setzero_ps();
        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = _mm256_set1_ps(f16::to_f32(x.d) * f16::to_f32(y.d));
            let bx = _mm256_loadu_si256(x.qs.as_ptr() as *const __m256i);
            let by = _mm256_loadu_si256(y.qs.as_ptr() as *const __m256i);
            let q = mul_sum_i8_pairs_float(bx, by);
            acc = _mm256_fmadd_ps(d, q, acc);
        }
        Ok(hsum_float_8(acc))
    }
}

#[inline(always)]
unsafe fn get_scale_shuffle(i: usize) -> __m128i {
    const K_SHUFFLE: [u8; 128] = [
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
        3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7,
        7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
        11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13,
        13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
    ];
    _mm_loadu_si128((K_SHUFFLE.as_ptr() as *const __m128i).add(i))
}

#[inline(always)]
unsafe fn get_scale_shuffle_k4(i: usize) -> __m256i {
    const K_SHUFFLE: [u8; 256] = [
        0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
        0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
        2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
        4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
        6, 7, 6, 7, 6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
        8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10,
        11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 12, 13, 12, 13, 12, 13,
        12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12,
        13, 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15,
        14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15,
    ];
    _mm256_loadu_si256((K_SHUFFLE.as_ptr() as *const __m256i).add(i))
}

#[inline(always)]
unsafe fn get_scale_shuffle_q3k(i: usize) -> __m256i {
    const K_SHUFFLE: [u8; 128] = [
        0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
        2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
        6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 11, 10, 11, 10, 11, 10, 11,
        10, 11, 10, 11, 10, 11, 10, 11, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12,
        13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15,
    ];
    _mm256_loadu_si256((K_SHUFFLE.as_ptr() as *const __m256i).add(i))
}

#[inline(always)]
pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> {
    let qk = QK_K;
    if n % qk != 0 {
        crate::bail!("vec_dot_q6k_8k: {n} is not divisible by {qk}")
    }

    unsafe {
        let m4 = _mm256_set1_epi8(0xF);
        let m2 = _mm256_set1_epi8(3);
        let m32s = _mm256_set1_epi8(32);
        let mut acc = _mm256_setzero_ps();
        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = y.d * x.d.to_f32();
            let mut q4 = x.ql.as_ptr();
            let mut qh = x.qh.as_ptr();
            let mut q8 = y.qs.as_ptr();

            let scales = _mm_loadu_si128(x.scales.as_ptr() as *const __m128i);
            let mut sumi = _mm256_setzero_si256();

            for j in 0..QK_K / 128 {
                let is = j * 4;
                let scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is));
                let scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
                let scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
                let scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));

                let q4bits1 = _mm256_loadu_si256(q4 as *const __m256i);
                q4 = q4.add(32);
                let q4bits2 = _mm256_loadu_si256(q4 as *const __m256i);
                q4 = q4.add(32);
                let q4bits_h = _mm256_loadu_si256(qh as *const __m256i);
                qh = qh.add(32);

                let q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bits_h, m2), 4);
                let q4h_1 =
                    _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bits_h, 2), m2), 4);
                let q4h_2 =
                    _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bits_h, 4), m2), 4);
                let q4h_3 =
                    _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bits_h, 6), m2), 4);

                let q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
                let q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
                let q4_2 =
                    _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
                let q4_3 =
                    _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);

                let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_2 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_3 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);

                let q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
                let q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
                let q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
                let q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);

                let p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
                let p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
                let p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
                let p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);

                let p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
                let p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
                let p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
                let p16_3 = _mm256_sub_epi16(p16_3, q8s_3);

                let p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
                let p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
                let p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
                let p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);

                sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
                sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
            }
            acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
        }
        Ok(hsum_float_8(acc))
    }
}

#[inline(always)]
unsafe fn mm256_set_m128i(a: __m128i, b: __m128i) -> __m256i {
    _mm256_insertf128_si256(_mm256_castsi128_si256(b), a, 1)
}

#[inline(always)]
pub(crate) fn vec_dot_q2k_q8k(n: usize, xs: &[BlockQ2K], ys: &[BlockQ8K]) -> Result<f32> {
    if n % QK_K != 0 {
        crate::bail!("vec_dot_q2k_q8k: {n} is not divisible by {QK_K}")
    }

    unsafe {
        let m3 = _mm256_set1_epi8(3);
        let m4 = _mm_set1_epi8(0xF);

        let mut acc = _mm256_setzero_ps();

        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = y.d * x.d.to_f32();
            let dmin = -y.d * x.dmin.to_f32();

            let mut q2 = x.qs.as_ptr();
            let mut q8 = y.qs.as_ptr();

            let mins_and_scales = _mm_loadu_si128(x.scales.as_ptr() as *const __m128i);
            let scales8 = _mm_and_si128(mins_and_scales, m4);
            let mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
            let mins = _mm256_cvtepi8_epi16(mins8);
            let prod =
                _mm256_madd_epi16(mins, _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i));

            acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);

            let all_scales = _mm256_cvtepi8_epi16(scales8);
            let l_scales = _mm256_extracti128_si256(all_scales, 0);
            let h_scales = _mm256_extracti128_si256(all_scales, 1);
            let scales = [
                mm256_set_m128i(l_scales, l_scales),
                mm256_set_m128i(h_scales, h_scales),
            ];

            let mut sumi = _mm256_setzero_si256();

            for scale in scales {
                let q2bits = _mm256_loadu_si256(q2 as *const __m256i);
                q2 = q2.add(32);

                let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_2 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_3 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);

                let q2_0 = _mm256_and_si256(q2bits, m3);
                let q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
                let q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
                let q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);

                let p0 = _mm256_maddubs_epi16(q2_0, q8_0);
                let p1 = _mm256_maddubs_epi16(q2_1, q8_1);
                let p2 = _mm256_maddubs_epi16(q2_2, q8_2);
                let p3 = _mm256_maddubs_epi16(q2_3, q8_3);

                let p0 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(0)), p0);
                let p1 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(1)), p1);
                let p2 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(2)), p2);
                let p3 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(scale, get_scale_shuffle_q3k(3)), p3);

                let p0 = _mm256_add_epi32(p0, p1);
                let p2 = _mm256_add_epi32(p2, p3);

                sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
            }
            acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
        }

        Ok(hsum_float_8(acc))
    }
}

#[inline(always)]
pub(crate) fn vec_dot_q3k_q8k(n: usize, xs: &[BlockQ3K], ys: &[BlockQ8K]) -> Result<f32> {
    if n % QK_K != 0 {
        crate::bail!("vec_dot_q3k_q8k: {n} is not divisible by {QK_K}")
    }

    const KMASK1: u32 = 0x03030303;
    const KMASK2: u32 = 0x0f0f0f0f;

    let mut aux = [0u32; 3];

    unsafe {
        let m3 = _mm256_set1_epi8(3);
        let mone = _mm256_set1_epi8(1);
        let m32 = _mm_set1_epi8(32);

        let mut acc = _mm256_setzero_ps();
        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = y.d * x.d.to_f32();

            let mut q3 = x.qs.as_ptr();
            let mut q8 = y.qs.as_ptr();

            LittleEndian::read_u32_into(&x.scales, &mut aux);
            let scales128 = _mm_set_epi32(
                (((aux[1] >> 4) & KMASK2) | (((aux[2] >> 6) & KMASK1) << 4)) as i32,
                (((aux[0] >> 4) & KMASK2) | (((aux[2] >> 4) & KMASK1) << 4)) as i32,
                ((aux[1] & KMASK2) | (((aux[2] >> 2) & KMASK1) << 4)) as i32,
                ((aux[0] & KMASK2) | (((aux[2]) & KMASK1) << 4)) as i32,
            );
            let scales128 = _mm_sub_epi8(scales128, m32);
            let all_scales = _mm256_cvtepi8_epi16(scales128);
            let l_scales = _mm256_extracti128_si256(all_scales, 0);
            let h_scales = _mm256_extracti128_si256(all_scales, 1);
            let scales = [
                mm256_set_m128i(l_scales, l_scales),
                mm256_set_m128i(h_scales, h_scales),
            ];

            // high bit
            let hbits = _mm256_loadu_si256(x.hmask.as_ptr() as *const __m256i);

            let mut sumi = _mm256_setzero_si256();

            for (j, scale) in scales.iter().enumerate() {
                // load low 2 bits
                let q3bits = _mm256_loadu_si256(q3 as *const __m256i);
                q3 = q3.add(32);

                // Prepare low and high bits
                // We hardcode the shifts here to avoid loading them into a separate register
                let q3l_0 = _mm256_and_si256(q3bits, m3);
                let q3h_0 = if j == 0 {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 0)), 0)
                } else {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 4)), 4)
                };
                let q3h_0 = _mm256_slli_epi16(q3h_0, 2);

                let q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
                let q3h_1 = if j == 0 {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 1)), 1)
                } else {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 5)), 5)
                };
                let q3h_1 = _mm256_slli_epi16(q3h_1, 2);

                let q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
                let q3h_2 = if j == 0 {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 2)), 2)
                } else {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 6)), 6)
                };
                let q3h_2 = _mm256_slli_epi16(q3h_2, 2);

                let q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
                let q3h_3 = if j == 0 {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 3)), 3)
                } else {
                    _mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, 7)), 7)
                };
                let q3h_3 = _mm256_slli_epi16(q3h_3, 2);

                // load Q8 quants
                let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_2 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_3 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);

                // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we
                // can use _mm256_maddubs_epi16, and then subtract. The high bit part has the 2
                // already subtracted (and so, it is zero if the high bit was not set, and 2 if the
                // high bit was set)
                let q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
                let q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
                let q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
                let q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);

                let p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
                let p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
                let p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
                let p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);

                let p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
                let p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
                let p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
                let p16_3 = _mm256_sub_epi16(p16_3, q8s_3);

                // multiply with scales
                let p16_0 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(0)), p16_0);
                let p16_1 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(1)), p16_1);
                let p16_2 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(2)), p16_2);
                let p16_3 =
                    _mm256_madd_epi16(_mm256_shuffle_epi8(*scale, get_scale_shuffle_q3k(3)), p16_3);

                // accumulate
                let p16_0 = _mm256_add_epi32(p16_0, p16_1);
                let p16_2 = _mm256_add_epi32(p16_2, p16_3);
                sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
            }

            // multiply with block scale and accumulate
            acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
        }
        Ok(hsum_float_8(acc))
    }
}

#[inline(always)]
pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> {
    if n % QK_K != 0 {
        crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}")
    }
    let mut utmp = [0u32; 4];
    const KMASK1: u32 = 0x3f3f3f3f;
    const KMASK2: u32 = 0x0f0f0f0f;
    const KMASK3: u32 = 0x03030303;

    unsafe {
        let m4 = _mm256_set1_epi8(0xF);

        let mut acc = _mm256_setzero_ps();
        let mut acc_m = _mm_setzero_ps();

        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = y.d * x.d.to_f32();
            let dmin = -y.d * x.dmin.to_f32();

            LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);

            utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
            let uaux = utmp[1] & KMASK1;
            utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
            utmp[2] = uaux;
            utmp[0] &= KMASK1;

            let mut q4 = x.qs.as_ptr();
            let mut q8 = y.qs.as_ptr();

            let mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(
                utmp[3] as i32,
                utmp[2] as i32,
                utmp[1] as i32,
                utmp[0] as i32,
            ));

            let q8sums = _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i);
            let q8s = _mm_hadd_epi16(
                _mm256_extracti128_si256(q8sums, 0),
                _mm256_extracti128_si256(q8sums, 1),
            );
            let prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
            acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);

            let sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
            let scales = mm256_set_m128i(sc128, sc128);

            let mut sumi = _mm256_setzero_si256();

            for j in 0..QK_K / 64 {
                let scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j));
                let scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j + 1));

                let q4bits = _mm256_loadu_si256(q4 as *const __m256i);
                q4 = q4.add(32);
                let q4l = _mm256_and_si256(q4bits, m4);
                let q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);

                let q8l = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let p16l = _mm256_maddubs_epi16(q4l, q8l);
                let p16l = _mm256_madd_epi16(scale_l, p16l);
                sumi = _mm256_add_epi32(sumi, p16l);

                let q8h = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let p16h = _mm256_maddubs_epi16(q4h, q8h);
                let p16h = _mm256_madd_epi16(scale_h, p16h);
                sumi = _mm256_add_epi32(sumi, p16h);
            }

            let vd = _mm256_set1_ps(d);
            acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
        }

        let acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
        let acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));

        Ok(hsum_float_8(acc) + _mm_cvtss_f32(acc_m))
    }
}

#[inline(always)]
pub(crate) fn vec_dot_q5k_q8k(n: usize, xs: &[BlockQ5K], ys: &[BlockQ8K]) -> Result<f32> {
    if n % QK_K != 0 {
        crate::bail!("vec_dot_q5k_q8k: {n} is not divisible by {QK_K}")
    }
    let mut utmp = [0u32; 4];
    const KMASK1: u32 = 0x3f3f3f3f;
    const KMASK2: u32 = 0x0f0f0f0f;
    const KMASK3: u32 = 0x03030303;

    unsafe {
        let m4 = _mm256_set1_epi8(0xF);
        let mzero = _mm_setzero_si128();
        let mone = _mm256_set1_epi8(1);

        let mut acc = _mm256_setzero_ps();
        let mut summs = 0.0;

        for (x, y) in xs.iter().zip(ys.iter()) {
            let d = y.d * x.d.to_f32();
            let dmin = -y.d * x.dmin.to_f32();

            LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]);

            utmp[3] = ((utmp[2] >> 4) & KMASK2) | (((utmp[1] >> 6) & KMASK3) << 4);
            let uaux = utmp[1] & KMASK1;
            utmp[1] = (utmp[2] & KMASK2) | (((utmp[0] >> 6) & KMASK3) << 4);
            utmp[2] = uaux;
            utmp[0] &= KMASK1;

            let mut q5 = x.qs.as_ptr();
            let mut q8 = y.qs.as_ptr();

            let mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(
                utmp[3] as i32,
                utmp[2] as i32,
                utmp[1] as i32,
                utmp[0] as i32,
            ));

            let q8sums = _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i);
            let q8s = _mm_hadd_epi16(
                _mm256_extracti128_si256(q8sums, 0),
                _mm256_extracti128_si256(q8sums, 1),
            );
            let prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
            let hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
            summs += dmin * _mm_extract_epi32(hsum, 0) as f32;

            let sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
            let scales = mm256_set_m128i(sc128, sc128);

            let hbits = _mm256_loadu_si256(x.qh.as_ptr() as *const __m256i);
            let mut hmask = mone;

            let mut sumi = _mm256_setzero_si256();

            for j in 0..QK_K / 64 {
                let scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j));
                let scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j + 1));

                let q5bits = _mm256_loadu_si256(q5 as *const __m256i);
                q5 = q5.add(32);

                //Similar to q3k we hardcode the shifts here to avoid loading them into a separate register
                let q5l_0 = _mm256_and_si256(q5bits, m4);
                let q5l_0_shift_input = _mm256_and_si256(hbits, hmask);
                let q5l_0_right_shift = match j {
                    0 => _mm256_srli_epi16(q5l_0_shift_input, 0),
                    1 => _mm256_srli_epi16(q5l_0_shift_input, 2),
                    2 => _mm256_srli_epi16(q5l_0_shift_input, 4),
                    3 => _mm256_srli_epi16(q5l_0_shift_input, 6),
                    _ => unreachable!(),
                };
                let q5h_0 = _mm256_slli_epi16(q5l_0_right_shift, 4);
                let q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
                hmask = _mm256_slli_epi16(hmask, 1);

                let q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
                let q5l_1_shift_input = _mm256_and_si256(hbits, hmask);
                let q5l_1_right_shift = match j {
                    0 => _mm256_srli_epi16(q5l_1_shift_input, 1),
                    1 => _mm256_srli_epi16(q5l_1_shift_input, 3),
                    2 => _mm256_srli_epi16(q5l_1_shift_input, 5),
                    3 => _mm256_srli_epi16(q5l_1_shift_input, 7),
                    _ => unreachable!(),
                };

                let q5h_1 = _mm256_slli_epi16(q5l_1_right_shift, 4);
                let q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
                hmask = _mm256_slli_epi16(hmask, 1);

                let q8_0 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);
                let q8_1 = _mm256_loadu_si256(q8 as *const __m256i);
                q8 = q8.add(32);

                let p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
                let p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);

                let p16_0 = _mm256_madd_epi16(scale_0, p16_0);
                let p16_1 = _mm256_madd_epi16(scale_1, p16_1);

                sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
            }
            let vd = _mm256_set1_ps(d);
            acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
        }
        Ok(hsum_float_8(acc) + summs)
    }
}

#[inline(always)]
pub(crate) fn vec_dot_q8k_q8k(n: usize, xs: &[BlockQ8K], ys: &[BlockQ8K]) -> Result<f32> {
    let qk = QK_K;
    if n % qk != 0 {
        crate::bail!("vec_dot_q8k_8k: {n} is not divisible by {qk}")
    }

    unsafe {
        let mut acc = _mm256_setzero_ps();
        for (xs, ys) in xs.iter().zip(ys.iter()) {
            let mut sumi = _mm256_setzero_si256();
            let x_qs = xs.qs.as_ptr();
            let y_qs = ys.qs.as_ptr();
            for j in (0..QK_K).step_by(32) {
                let xs = _mm256_loadu_si256(x_qs.add(j) as *const __m256i);
                let ys = _mm256_loadu_si256(y_qs.add(j) as *const __m256i);

                let xs0 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(xs, 0));
                let ys0 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(ys, 0));
                sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(xs0, ys0));

                let xs1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(xs, 1));
                let ys1 = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(ys, 1));
                sumi = _mm256_add_epi32(sumi, _mm256_madd_epi16(xs1, ys1));
            }
            let d = _mm256_set1_ps(xs.d * ys.d);
            acc = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi), acc);
        }
        Ok(hsum_float_8(acc))
    }
}