summaryrefslogtreecommitdiff
path: root/candle-core/src/quantized/mod.rs
blob: 00ead0cdcb33a7da1a942596f3e66e63f406bde4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
use crate::{Device, Result, Shape, Tensor};

#[cfg(target_feature = "avx")]
pub mod avx;
pub mod ggml_file;
pub mod k_quants;

pub use k_quants::GgmlType;

pub struct QTensor {
    data: Box<dyn QuantizedType>,
    shape: Shape,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum GgmlDType {
    F32,
    F16,
    Q4_0,
    Q4_1,
    Q5_0,
    Q5_1,
    Q8_0,
    Q8_1,
    Q2K,
    Q3K,
    Q4K,
    Q5K,
    Q6K,
    Q8K,
}

impl GgmlDType {
    pub(crate) fn from_u32(u: u32) -> Result<Self> {
        let dtype = match u {
            0 => Self::F32,
            1 => Self::F16,
            2 => Self::Q4_0,
            3 => Self::Q4_1,
            6 => Self::Q5_0,
            7 => Self::Q5_1,
            8 => Self::Q8_0,
            9 => Self::Q8_1,
            10 => Self::Q2K,
            11 => Self::Q3K,
            12 => Self::Q4K,
            13 => Self::Q5K,
            14 => Self::Q6K,
            15 => Self::Q8K,
            _ => crate::bail!("unknown dtype for tensor {u}"),
        };
        Ok(dtype)
    }

    /// The type size for blocks in bytes.
    pub fn type_size(&self) -> usize {
        use k_quants::*;
        match self {
            Self::F32 => 4,
            Self::F16 => 2,
            Self::Q4_0 => std::mem::size_of::<BlockQ4_0>(),
            Self::Q4_1 => std::mem::size_of::<BlockQ4_1>(),
            Self::Q5_0 => std::mem::size_of::<BlockQ5_0>(),
            Self::Q5_1 => std::mem::size_of::<BlockQ5_1>(),
            // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/ggml.c#L932
            Self::Q8_0 => std::mem::size_of::<BlockQ8_0>(),
            Self::Q8_1 => std::mem::size_of::<BlockQ8_1>(),
            Self::Q2K => std::mem::size_of::<BlockQ2K>(),
            Self::Q3K => std::mem::size_of::<BlockQ3K>(),
            Self::Q4K => std::mem::size_of::<BlockQ4K>(),
            Self::Q5K => std::mem::size_of::<BlockQ5K>(),
            Self::Q6K => std::mem::size_of::<BlockQ6K>(),
            Self::Q8K => std::mem::size_of::<BlockQ8K>(),
        }
    }

    /// The block size, i.e. the number of elements stored in each block.
    pub fn blck_size(&self) -> usize {
        match self {
            Self::F32 => 1,
            Self::F16 => 1,
            Self::Q4_0 => k_quants::QK4_0,
            Self::Q4_1 => k_quants::QK4_1,
            Self::Q5_0 => k_quants::QK5_0,
            Self::Q5_1 => k_quants::QK5_1,
            Self::Q8_0 => k_quants::QK8_0,
            Self::Q8_1 => k_quants::QK8_1,
            Self::Q2K | Self::Q3K | Self::Q4K | Self::Q5K | Self::Q6K | Self::Q8K => k_quants::QK_K,
        }
    }
}

// A version of GgmlType without `vec_dot` so that it can be dyn boxed.
pub trait QuantizedType: Send + Sync {
    fn dtype(&self) -> GgmlDType;
    fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()>;
    fn to_float(&self, ys: &mut [f32]) -> Result<()>;
}

impl<T: k_quants::GgmlType + Send + Sync> QuantizedType for Vec<T> {
    fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
        k_quants::matmul(mkn, lhs, self.as_slice(), dst)
    }

    fn dtype(&self) -> GgmlDType {
        T::DTYPE
    }

    fn to_float(&self, ys: &mut [f32]) -> Result<()> {
        T::to_float(self.as_slice(), ys)
    }
}

impl std::fmt::Debug for QTensor {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "QTensor[{:?}; {:?}]", self.shape, self.dtype())
    }
}

fn check_shape<T: k_quants::GgmlType>(shape: &Shape) -> Result<()> {
    let dims = shape.dims();
    if dims.is_empty() {
        crate::bail!("scalar tensor cannot be quantized {shape:?}")
    }
    if dims[dims.len() - 1] % T::BLCK_SIZE != 0 {
        crate::bail!(
            "quantized tensor must have their last dim divisible by block size {shape:?} {}",
            T::BLCK_SIZE
        )
    }
    Ok(())
}

impl QTensor {
    pub fn new<S: Into<Shape>, T: k_quants::GgmlType + Send + Sync + 'static>(
        data: Vec<T>,
        shape: S,
    ) -> Result<Self> {
        let shape = shape.into();
        check_shape::<T>(&shape)?;
        Ok(Self {
            data: Box::new(data),
            shape,
        })
    }

    pub fn quantize<T: k_quants::GgmlType + Send + Sync + 'static>(src: &Tensor) -> Result<Self> {
        let shape = src.shape();
        check_shape::<T>(shape)?;
        let src = src
            .to_dtype(crate::DType::F32)?
            .flatten_all()?
            .to_vec1::<f32>()?;
        if src.len() % T::BLCK_SIZE != 0 {
            crate::bail!(
                "tensor size ({shape:?}) is not divisible by block size {}",
                T::BLCK_SIZE
            )
        }
        let mut data = vec![T::zeros(); src.len() / T::BLCK_SIZE];
        T::from_float(&src, &mut data)?;
        Ok(Self {
            data: Box::new(data),
            shape: shape.clone(),
        })
    }

    pub fn dtype(&self) -> GgmlDType {
        self.data.dtype()
    }

    pub fn shape(&self) -> &Shape {
        &self.shape
    }

    pub fn dequantize(&self, device: &Device) -> Result<Tensor> {
        let mut f32_data = vec![0f32; self.shape.elem_count()];
        self.data.to_float(&mut f32_data)?;
        Tensor::from_vec(f32_data, &self.shape, device)
    }

    pub fn matmul_t(&self, mkn: (usize, usize, usize), lhs: &[f32], dst: &mut [f32]) -> Result<()> {
        self.data.matmul_t(mkn, lhs, dst)
    }
}

#[derive(Debug)]
pub struct QMatMul(QTensor);

impl QMatMul {
    pub fn from_qtensor(qtensor: QTensor) -> Self {
        Self(qtensor)
    }
}

impl crate::CustomOp1 for QTensor {
    fn name(&self) -> &'static str {
        "qmatmul"
    }

    fn cpu_fwd(
        &self,
        storage: &crate::CpuStorage,
        layout: &crate::Layout,
    ) -> Result<(crate::CpuStorage, Shape)> {
        if !layout.is_contiguous() {
            crate::bail!("input tensor is not contiguous {layout:?}")
        }
        let src_shape = layout.shape();
        // self is transposed so n is first then k.
        let (n, k) = self.shape.dims2()?;
        if src_shape.rank() < 2 {
            crate::bail!("input tensor has only one dimension {layout:?}")
        }
        let mut dst_shape = src_shape.dims().to_vec();
        let last_k = dst_shape.pop().unwrap();
        if last_k != k {
            crate::bail!("input tensor {layout:?} incompatible with {:?}", self.shape)
        }
        dst_shape.push(n);
        let dst_shape = Shape::from(dst_shape);
        let storage = storage.as_slice::<f32>()?;
        let storage =
            &storage[layout.start_offset()..layout.start_offset() + src_shape.elem_count()];
        let mut dst_storage = vec![0f32; dst_shape.elem_count()];
        self.matmul_t(
            (dst_shape.elem_count() / n, k, n),
            storage,
            &mut dst_storage,
        )?;
        Ok((crate::CpuStorage::F32(dst_storage), dst_shape))
    }
}

impl QMatMul {
    pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        xs.apply_op1_no_bwd(&self.0)
    }
}