1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
use crate::{Error, Result};
#[derive(Clone, PartialEq, Eq)]
pub struct Shape(Vec<usize>);
pub const SCALAR: Shape = Shape(vec![]);
impl std::fmt::Debug for Shape {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", &self.dims())
}
}
impl<const C: usize> From<&[usize; C]> for Shape {
fn from(dims: &[usize; C]) -> Self {
Self(dims.to_vec())
}
}
impl From<&[usize]> for Shape {
fn from(dims: &[usize]) -> Self {
Self(dims.to_vec())
}
}
impl From<&Shape> for Shape {
fn from(shape: &Shape) -> Self {
Self(shape.0.to_vec())
}
}
impl From<()> for Shape {
fn from(_: ()) -> Self {
Self(vec![])
}
}
impl From<usize> for Shape {
fn from(d1: usize) -> Self {
Self(vec![d1])
}
}
impl From<(usize, usize)> for Shape {
fn from(d12: (usize, usize)) -> Self {
Self(vec![d12.0, d12.1])
}
}
impl From<(usize, usize, usize)> for Shape {
fn from(d123: (usize, usize, usize)) -> Self {
Self(vec![d123.0, d123.1, d123.2])
}
}
impl From<(usize, usize, usize, usize)> for Shape {
fn from(d1234: (usize, usize, usize, usize)) -> Self {
Self(vec![d1234.0, d1234.1, d1234.2, d1234.3])
}
}
impl From<(usize, usize, usize, usize, usize)> for Shape {
fn from(d12345: (usize, usize, usize, usize, usize)) -> Self {
Self(vec![d12345.0, d12345.1, d12345.2, d12345.3, d12345.4])
}
}
impl From<Vec<usize>> for Shape {
fn from(dims: Vec<usize>) -> Self {
Self(dims)
}
}
macro_rules! extract_dims {
($fn_name:ident, $cnt:tt, $dims:expr, $out_type:ty) => {
pub fn $fn_name(&self) -> Result<$out_type> {
if self.0.len() != $cnt {
Err(Error::UnexpectedNumberOfDims {
expected: $cnt,
got: self.0.len(),
shape: self.clone(),
})
} else {
Ok($dims(&self.0))
}
}
};
}
impl Shape {
pub fn from_dims(dims: &[usize]) -> Self {
Self(dims.to_vec())
}
pub fn rank(&self) -> usize {
self.0.len()
}
pub fn into_dims(self) -> Vec<usize> {
self.0
}
pub fn dims(&self) -> &[usize] {
&self.0
}
pub fn elem_count(&self) -> usize {
self.0.iter().product()
}
extract_dims!(r0, 0, |_: &Vec<usize>| (), ());
extract_dims!(r1, 1, |d: &[usize]| d[0], usize);
extract_dims!(r2, 2, |d: &[usize]| (d[0], d[1]), (usize, usize));
extract_dims!(
r3,
3,
|d: &[usize]| (d[0], d[1], d[2]),
(usize, usize, usize)
);
extract_dims!(
r4,
4,
|d: &[usize]| (d[0], d[1], d[2], d[3]),
(usize, usize, usize, usize)
);
extract_dims!(
r5,
5,
|d: &[usize]| (d[0], d[1], d[2], d[3], d[4]),
(usize, usize, usize, usize, usize)
);
/// The strides given in number of elements for a contiguous n-dimensional
/// arrays using this shape.
pub(crate) fn stride_contiguous(&self) -> Vec<usize> {
let mut stride: Vec<_> = self
.0
.iter()
.rev()
.scan(1, |prod, u| {
let prod_pre_mult = *prod;
*prod *= u;
Some(prod_pre_mult)
})
.collect();
stride.reverse();
stride
}
/// Returns true if the strides are C contiguous (aka row major).
pub fn is_contiguous(&self, stride: &[usize]) -> bool {
if self.0.len() != stride.len() {
return false;
}
let mut acc = 1;
for (&stride, &dim) in stride.iter().zip(self.0.iter()).rev() {
if stride != acc {
return false;
}
acc *= dim;
}
true
}
/// Returns true if the strides are Fortran contiguous (aka column major).
pub fn is_fortran_contiguous(&self, stride: &[usize]) -> bool {
if self.0.len() != stride.len() {
return false;
}
let mut acc = 1;
for (&stride, &dim) in stride.iter().zip(self.0.iter()) {
if stride != acc {
return false;
}
acc *= dim;
}
true
}
pub fn extend(mut self, additional_dims: &[usize]) -> Self {
self.0.extend(additional_dims);
self
}
}
pub trait Dim {
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize>;
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize>;
}
impl Dim for usize {
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let dim = *self;
if dim >= shape.dims().len() {
Err(Error::DimOutOfRange {
shape: shape.clone(),
dim: dim as i32,
op,
})?
} else {
Ok(dim)
}
}
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let dim = *self;
if dim > shape.dims().len() {
Err(Error::DimOutOfRange {
shape: shape.clone(),
dim: dim as i32,
op,
})?
} else {
Ok(dim)
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum D {
Minus1,
Minus2,
}
impl D {
fn out_of_range(&self, shape: &Shape, op: &'static str) -> Error {
let dim = match self {
Self::Minus1 => -1,
Self::Minus2 => -2,
};
Error::DimOutOfRange {
shape: shape.clone(),
dim,
op,
}
}
}
impl Dim for D {
fn to_index(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let rank = shape.rank();
match self {
Self::Minus1 if rank >= 1 => Ok(rank - 1),
Self::Minus2 if rank >= 2 => Ok(rank - 2),
_ => Err(self.out_of_range(shape, op)),
}
}
fn to_index_plus_one(&self, shape: &Shape, op: &'static str) -> Result<usize> {
let rank = shape.rank();
match self {
Self::Minus1 => Ok(rank),
Self::Minus2 if rank >= 1 => Ok(rank - 1),
_ => Err(self.out_of_range(shape, op)),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn stride() {
let shape = Shape::from(());
assert_eq!(shape.stride_contiguous(), Vec::<usize>::new());
let shape = Shape::from(42);
assert_eq!(shape.stride_contiguous(), [1]);
let shape = Shape::from((42, 1337));
assert_eq!(shape.stride_contiguous(), [1337, 1]);
let shape = Shape::from((299, 792, 458));
assert_eq!(shape.stride_contiguous(), [458 * 792, 458, 1]);
}
}
|