1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
use candle_core::backend::BackendStorage;
use candle_core::cpu_backend;
use candle_core::test_utils::to_vec1_round;
use candle_core::{CpuStorage, CustomOp1, DType, Device, Error, Layout, Result, Shape, Tensor};
fn fwd<T: num_traits::Float>(v: T, alpha: f64) -> T {
if v.is_sign_positive() {
v
} else {
let alpha = T::from(alpha).unwrap_or(T::nan());
(v.exp() - T::one()) * alpha
}
}
struct Elu {
alpha: f64,
}
impl CustomOp1 for Elu {
fn name(&self) -> &'static str {
"elu"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
let storage = candle_core::map_dtype!(
"elu",
s,
|s| cpu_backend::unary_map(s, l, |v| fwd(v, self.alpha)),
(BF16, F16, F32, F64)
);
Ok((storage, l.shape().clone()))
}
}
#[test]
fn custom_op1_no_backward() -> Result<()> {
let cpu = &Device::Cpu;
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
let t = (t - 5.)?;
let elu_t = t.apply_op1_no_bwd(&Elu { alpha: 1. })?;
assert_eq!(
to_vec1_round(&elu_t, 4)?,
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
);
Ok(())
}
// Define a similar struct as Elu but with backward support.
fn bwd<T: num_traits::Float>(v: T, alpha: f64) -> T {
if v.is_sign_positive() {
T::one()
} else {
let alpha = T::from(alpha).unwrap_or(T::nan());
v.exp() * alpha
}
}
struct EluBackward {
alpha: f64,
}
impl CustomOp1 for EluBackward {
fn name(&self) -> &'static str {
"elu-bwd"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
let storage = candle_core::map_dtype!(
"elu-bwd",
s,
|s| cpu_backend::unary_map(s, l, |v| bwd(v, self.alpha)),
(BF16, F16, F32, F64)
);
Ok((storage, l.shape().clone()))
}
}
struct EluWithBackward(Elu);
impl EluWithBackward {
fn new(alpha: f64) -> Self {
Self(Elu { alpha })
}
}
impl CustomOp1 for EluWithBackward {
fn name(&self) -> &'static str {
"elu"
}
fn cpu_fwd(&self, s: &CpuStorage, l: &Layout) -> Result<(CpuStorage, Shape)> {
self.0.cpu_fwd(s, l)
}
fn bwd(&self, arg: &Tensor, _res: &Tensor, grad_res: &Tensor) -> Result<Option<Tensor>> {
let alpha = self.0.alpha;
let bwd = arg.apply_op1(EluBackward { alpha })?;
Ok(Some(grad_res.mul(&bwd)?))
}
}
#[test]
fn custom_op1_with_backward() -> Result<()> {
let cpu = &Device::Cpu;
let t = candle_core::Var::new(&[-2f32, 0f32, 2f32], cpu)?;
let elu_t = t.apply_op1(EluWithBackward::new(2.))?;
assert_eq!(to_vec1_round(&elu_t, 4)?, &[-1.7293, 0.0, 2.0]);
let grads = elu_t.backward()?;
let grad_x = grads.get(&t).unwrap();
assert_eq!(to_vec1_round(grad_x, 4)?, [0.2707, 1.0, 1.0]);
Ok(())
}
impl candle_core::InplaceOp1 for Elu {
fn name(&self) -> &'static str {
"elu"
}
fn cpu_fwd(&self, s: &mut CpuStorage, _l: &Layout) -> Result<()> {
let alpha = self.alpha;
match s {
CpuStorage::BF16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
CpuStorage::F16(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
CpuStorage::F32(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
CpuStorage::F64(s) => s.iter_mut().for_each(|v| *v = fwd(*v, alpha)),
_ => candle_core::bail!("unsupported dtype for inplace elu"),
}
Ok(())
}
}
#[test]
fn inplace_op1() -> Result<()> {
let cpu = &Device::Cpu;
let t = Tensor::arange(0u32, 12u32, cpu)?.to_dtype(DType::F32)?;
let t = (t - 5.)?;
t.inplace_op1(&Elu { alpha: 1. })?;
assert_eq!(
to_vec1_round(&t, 4)?,
&[-0.9933, -0.9817, -0.9502, -0.8647, -0.6321, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
);
Ok(())
}
|