summaryrefslogtreecommitdiff
path: root/candle-examples/examples/colpali/main.rs
blob: 2a1cc96b9ee9a2b46df7f12644a22dd822bbf4b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use anyhow::{Error as E, Result};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::models::colpali::Model;
use candle_transformers::models::{colpali, paligemma};
use clap::Parser;
use hf_hub::{api::sync::Api, Repo, RepoType};
use image::DynamicImage;
use pdf2image::{RenderOptionsBuilder, PDF};
use tokenizers::Tokenizer;

struct PageRetriever {
    model: Model,
    config: paligemma::Config,
    pdf: PDF,
    device: Device,
    tokenizer: Tokenizer,
    range: pdf2image::Pages,
    batch_size: usize,
    top_k: usize,
}

impl PageRetriever {
    fn new(
        model: Model,
        config: paligemma::Config,
        pdf: PDF,
        tokenizer: Tokenizer,
        device: &Device,
        range: Option<pdf2image::Pages>,
        batch_size: usize,
        top_k: usize,
    ) -> Self {
        let page_count = pdf.page_count();
        Self {
            model,
            config,
            pdf,
            device: device.clone(),
            tokenizer,
            range: range.unwrap_or_else(|| pdf2image::Pages::Range(1..=page_count)),
            batch_size,
            top_k,
        }
    }

    fn get_images_from_pdf(&self) -> Result<Vec<DynamicImage>> {
        let pages = self
            .pdf
            .render(self.range.clone(), RenderOptionsBuilder::default().build()?)?;
        Ok(pages)
    }

    fn tokenize_batch(&self, prompts: Vec<&str>) -> Result<Tensor> {
        let tokens = self.tokenizer.encode_batch(prompts, true).map_err(E::msg)?;
        let token_ids = tokens
            .iter()
            .map(|tokens| {
                let tokens = tokens.get_ids().to_vec();
                Tensor::new(tokens.as_slice(), &self.device)
            })
            .collect::<candle::Result<Vec<_>>>()?;
        let input = Tensor::stack(&token_ids, 0)?;
        Ok(input)
    }

    fn images_to_tensor(
        &self,
        pages: &[DynamicImage],
        image_size: usize,
    ) -> anyhow::Result<Tensor> {
        let mut images = vec![];
        for page in pages.iter() {
            let img = page.resize_to_fill(
                image_size as u32,
                image_size as u32,
                image::imageops::FilterType::Triangle,
            );
            let img = img.to_rgb8();
            let img = img.into_raw();
            let img = Tensor::from_vec(img, (image_size, image_size, 3), &Device::Cpu)?
                .permute((2, 0, 1))?
                .to_dtype(DType::F32)?
                .affine(2. / 255., -1.)?;
            images.push(img);
        }
        let images = Tensor::stack(&images, 0)?;
        Ok(images)
    }

    fn retrieve(&mut self, prompt: &str) -> Result<Vec<usize>> {
        let dtype = if self.device.is_cuda() {
            DType::BF16
        } else {
            DType::F32
        };

        let dummy_prompt: &str = "Describe the image";

        let input = self.tokenize_batch(vec![prompt])?;
        let dummy_input = self.tokenize_batch(vec![dummy_prompt])?;

        let pages = self.get_images_from_pdf()?;
        let mut all_scores = Vec::new();
        for batch in pages.chunks(self.batch_size) {
            let page_images = self
                .images_to_tensor(batch, self.config.vision_config.image_size)?
                .to_device(&self.device)?
                .to_dtype(dtype)?;
            let dummy_input = dummy_input.repeat((page_images.dims()[0], 0))?;

            let image_embeddings = self.model.forward_images(&page_images, &dummy_input)?;
            let text_embeddings = self.model.forward_text(&input)?;

            let scores = text_embeddings
                .unsqueeze(1)?
                .broadcast_matmul(&image_embeddings.unsqueeze(0)?.transpose(3, 2)?)?
                .max(3)?
                .sum(2)?;
            let batch_scores: Vec<f32> = scores
                .to_dtype(DType::F32)?
                .to_vec2()?
                .into_iter()
                .flatten()
                .collect();
            all_scores.extend(batch_scores);
        }

        let mut indices: Vec<usize> = (0..all_scores.len()).collect();
        indices.sort_by(|a, b| all_scores[*b].partial_cmp(&all_scores[*a]).unwrap());

        let top_k_indices = indices[0..self.top_k].to_vec();

        Ok(top_k_indices)
    }
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
    /// Run on CPU rather than on GPU.
    #[arg(long)]
    cpu: bool,

    /// Enable tracing (generates a trace-timestamp.json file).
    #[arg(long)]
    tracing: bool,

    #[arg(long)]
    prompt: String,

    /// number of top pages to show.
    #[arg(long, default_value_t = 3)]
    top_k: usize,

    #[arg(long)]
    model_id: Option<String>,

    #[arg(long, default_value = "main")]
    revision: String,

    #[arg(long)]
    tokenizer_file: Option<String>,

    #[arg(long)]
    weight_files: Option<String>,

    #[arg(long)]
    pdf: String,

    #[arg(long)]
    start: Option<u32>,

    #[arg(long)]
    end: Option<u32>,
}

fn main() -> Result<()> {
    use tracing_chrome::ChromeLayerBuilder;
    use tracing_subscriber::prelude::*;

    let args = Args::parse();
    let _guard = if args.tracing {
        let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
        tracing_subscriber::registry().with(chrome_layer).init();
        Some(guard)
    } else {
        None
    };
    println!(
        "avx: {}, neon: {}, simd128: {}, f16c: {}",
        candle::utils::with_avx(),
        candle::utils::with_neon(),
        candle::utils::with_simd128(),
        candle::utils::with_f16c()
    );

    let api = Api::new()?;
    let model_id = match &args.model_id {
        Some(model_id) => model_id.to_string(),
        None => "vidore/colpali-v1.2-merged".to_string(),
    };
    let repo = api.repo(Repo::with_revision(
        model_id,
        RepoType::Model,
        args.revision,
    ));

    let tokenizer_filename = match args.tokenizer_file {
        Some(file) => std::path::PathBuf::from(file),
        None => api
            .repo(Repo::with_revision(
                "vidore/colpali".to_string(),
                RepoType::Model,
                "main".to_string(),
            ))
            .get("tokenizer.json")?,
    };

    let filenames = match args.weight_files {
        Some(files) => files
            .split(',')
            .map(std::path::PathBuf::from)
            .collect::<Vec<_>>(),
        None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
    };

    let start = std::time::Instant::now();

    let config: paligemma::Config = paligemma::Config::paligemma_3b_448();

    println!("retrieved the files in {:?}", start.elapsed());

    let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
    let device = candle_examples::device(false)?;
    let dtype = if device.is_cuda() {
        DType::BF16
    } else {
        DType::F32
    };
    let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
    let model = colpali::Model::new(&config, vb)?;

    let pdf = PDF::from_file(args.pdf)?;

    // check if start and end given in arg
    let range = if let (Some(start), Some(end)) = (args.start, args.end) {
        pdf2image::Pages::Range(start..=end)
    } else {
        pdf2image::Pages::Range(1..=pdf.page_count()) // can use pdf2image::Pages::All but there is a bug in the library which causes the first page to rendered twice.
    };

    let mut retriever =
        PageRetriever::new(model, config, pdf, tokenizer, &device, Some(range), 4, 3);
    let top_k_indices = retriever.retrieve(&args.prompt)?;

    println!("Prompt: {}", args.prompt);
    println!(
        "top {} page numbers that contain similarity to the prompt",
        retriever.top_k
    );
    println!("-----------------------------------");
    for index in top_k_indices {
        println!("Page: {:?}", index + 1);
    }
    println!("-----------------------------------");
    Ok(())
}