1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{Embedding, Linear, VarBuilder};
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
use super::MAX_SEQ_LEN;
pub struct Config {
pub hidden_size: usize,
pub intermediate_size: usize,
pub vocab_size: usize,
pub n_layer: usize,
pub n_head: usize,
pub n_embd: usize,
pub n_key_value_head: usize,
}
impl Config {
pub fn config_7b() -> Self {
Self {
hidden_size: 4096,
intermediate_size: 11008,
vocab_size: 32000,
n_layer: 32,
n_head: 32,
n_embd: 4096,
n_key_value_head: 32,
}
}
}
#[derive(Clone)]
pub struct Cache {
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
pub use_kv_cache: bool,
#[allow(clippy::type_complexity)]
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
cos: Tensor,
sin: Tensor,
device: Device,
}
impl Cache {
pub fn new(use_kv_cache: bool, config: &Config, device: &Device) -> Result<Self> {
// precompute freqs_cis
let n_elem = config.n_embd / config.n_head;
let theta: Vec<_> = (0..n_elem)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), device)?;
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
.to_dtype(DType::F32)?
.reshape((MAX_SEQ_LEN, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
// This is different from the paper, see:
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
let cos = idx_theta.cos()?;
let sin = idx_theta.sin()?;
Ok(Self {
masks: Arc::new(Mutex::new(HashMap::new())),
use_kv_cache,
kvs: Arc::new(Mutex::new(vec![None; config.n_layer])),
device: device.clone(),
cos,
sin,
})
}
fn mask(&self, t: usize) -> Result<Tensor> {
let mut masks = self.masks.lock().unwrap();
if let Some(mask) = masks.get(&t) {
Ok(mask.clone())
} else {
// TODO: If we support bool or u8 tensors, this would be better.
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
masks.insert(t, mask.clone());
Ok(mask)
}
}
}
fn silu(xs: &Tensor) -> Result<Tensor> {
xs / (xs.neg()?.exp()? + 1.0)?
}
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
let weight = vb.get((size2, size1), "weight")?;
Ok(Linear::new(weight, None))
}
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
Ok(Embedding::new(embeddings, cfg.hidden_size))
}
struct RmsNorm {
scale: Tensor,
}
impl RmsNorm {
fn load(size: usize, vb: VarBuilder) -> Result<Self> {
let scale = vb.get(size, "weight")?;
Ok(Self::new(scale))
}
fn new(scale: Tensor) -> Self {
Self { scale }
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let in_dtype = x.dtype();
// This is a no-op if x's dtype is already f32.
let x = x.to_dtype(DType::F32)?;
let (b_sz, seq_len, hidden_size) = x.shape().r3()?;
let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?;
let x_normed = (x / (norm_x + 1e-6)?.sqrt()?)?;
let size = self.scale.shape().r1()?;
let scale = self
.scale
.to_dtype(DType::F32)?
.broadcast_as((b_sz, seq_len, size))?;
let x = (scale * x_normed)?;
let x = x.to_dtype(in_dtype)?;
Ok(x)
}
}
struct CausalSelfAttention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
o_proj: Linear,
n_head: usize,
n_key_value_head: usize,
head_dim: usize,
cache: Cache,
}
impl CausalSelfAttention {
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let (b_sz, _, seq_len, n_embd) = x.shape().r4()?;
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd))?;
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd))?;
let x1 = x.narrow(D::Minus1, 0, n_embd / 2)?;
let x2 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
Ok(rope)
}
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
let x_dtype = x.dtype();
let (b_sz, seq_len, n_embd) = x.shape().r3()?;
let q = self.q_proj.forward(x)?;
let k = self.k_proj.forward(x)?;
let v = self.v_proj.forward(x)?;
let q = q
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
.transpose(1, 2)?
.to_dtype(DType::F32)?;
let k = k
.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?
.transpose(1, 2)?
.to_dtype(DType::F32)?;
let mut v = v
.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?
.transpose(1, 2)?
.to_dtype(DType::F32)?;
let q = self.apply_rotary_emb(&q, index_pos)?;
let mut k = self.apply_rotary_emb(&k, index_pos)?;
if self.cache.use_kv_cache {
let mut cache = self.cache.kvs.lock().unwrap();
if let Some((cache_k, cache_v)) = &cache[block_idx] {
k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
let k_seq_len = k.dims()[1];
if k_seq_len > MAX_SEQ_LEN {
k = k
.narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
.contiguous()?
}
let v_seq_len = v.dims()[1];
if v_seq_len > 2 * MAX_SEQ_LEN {
v = v
.narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
.contiguous()?
}
}
cache[block_idx] = Some((k.clone(), v.clone()))
}
let k = self.repeat_kv(k)?;
let v = self.repeat_kv(v)?;
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
let att = att.softmax(D::Minus1)?;
// Convert to contiguous as matmul doesn't support strided vs for now.
let y = att.matmul(&v.contiguous()?)?;
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
let y = y.to_dtype(x_dtype)?;
let y = self.o_proj.forward(&y)?;
Ok(y)
}
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
let n_rep = self.n_head / self.n_key_value_head;
if n_rep == 1 {
Ok(x)
} else {
let (b_sz, n_kv_head, seq_len, head_dim) = x.shape().r4()?;
let x = x
.unsqueeze(2)?
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
.reshape((b_sz, n_kv_head, n_rep, seq_len, head_dim))?;
Ok(x)
}
}
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
let size_in = cfg.hidden_size;
let size_q = (cfg.hidden_size / cfg.n_head) * cfg.n_head;
let size_kv = (cfg.hidden_size / cfg.n_head) * cfg.n_key_value_head;
let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
o_proj,
n_head: cfg.n_head,
n_key_value_head: cfg.n_key_value_head,
head_dim: cfg.hidden_size / cfg.n_head,
cache: cache.clone(),
})
}
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
struct Mlp {
c_fc1: Linear,
c_fc2: Linear,
c_proj: Linear,
}
impl Mlp {
fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
Self {
c_fc1,
c_fc2,
c_proj,
}
}
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
self.c_proj.forward(&x)
}
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let h_size = cfg.hidden_size;
let i_size = cfg.intermediate_size;
let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
Ok(Self::new(c_fc1, c_fc2, c_proj))
}
}
struct Block {
rms_1: RmsNorm,
attn: CausalSelfAttention,
rms_2: RmsNorm,
mlp: Mlp,
}
impl Block {
fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
Self {
rms_1,
attn,
rms_2,
mlp,
}
}
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
let residual = x;
let x = self.rms_1.forward(x)?;
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
let residual = &x;
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
Ok(x)
}
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?;
let post_attention_layernorm =
RmsNorm::load(cfg.hidden_size, vb.pp("post_attention_layernorm"))?;
Ok(Self::new(
input_layernorm,
attn,
post_attention_layernorm,
mlp,
))
}
}
pub struct Llama {
wte: Embedding,
blocks: Vec<Block>,
ln_f: RmsNorm,
lm_head: Linear,
}
impl Llama {
fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self {
Self {
wte,
blocks,
ln_f,
lm_head,
}
}
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
let (_b_sz, seq_len) = x.shape().r2()?;
let mut x = self.wte.forward(x)?;
for (block_idx, block) in self.blocks.iter().enumerate() {
x = block.forward(&x, index_pos, block_idx)?;
}
let x = self.ln_f.forward(&x)?;
let x = x.i((.., seq_len - 1, ..))?;
let logits = self.lm_head.forward(&x)?;
logits.to_dtype(DType::F32)
}
pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
let norm = RmsNorm::load(cfg.hidden_size, vb.pp("model.norm"))?;
let blocks: Vec<_> = (0..cfg.n_layer)
.map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
.collect();
Ok(Self::new(wte, blocks, norm, lm_head))
}
}
|