summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llava/image_processor.rs
blob: b50771e503807450cb87e514057fb61dccf4f74d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
use std::cmp::min;

use candle::{bail, DType, Device, Result, Tensor};
use candle_transformers::models::llava::{
    config::{HFPreProcessorConfig, LLaVAConfig},
    utils::select_best_resolution,
};
use hf_hub::api::sync::Api;
use image::{imageops::overlay, DynamicImage, GenericImageView, Rgb, RgbImage};
use serde::{Deserialize, Serialize};

//This struct is mainly for LLaVA aplications, hence it's not completely compatible with python transformer CLIPImageProcessor  few several preprocess that LLaVA used, including "openai/clip-vit-large-patch14-336" and "openai/clip-vit-large-patch14".

#[derive(Serialize, Deserialize, Debug)]
pub struct ImageProcessor {
    #[serde(default = "default_size")]
    pub size: u32, // this is not the same as python transformer
    #[serde(default = "default_do_resize")]
    pub do_resize: bool,

    //resample: u32 // 3 for PIL bicubic, equivalent to rust  CatmullRom. Hence below we use CatmullRom
    #[serde(default = "default_do_center_crop")]
    pub do_center_crop: bool,
    #[serde(default = "default_crop_size")]
    pub crop_size: u32, // this is not the same as python transformer
    #[serde(default = "default_do_rescale")]
    pub do_rescale: bool,
    #[serde(default = "default_rescale_factor")]
    pub rescale_factor: f32,
    #[serde(default = "default_do_normalize")]
    pub do_normalize: bool,
    #[serde(default = "default_image_mean")]
    pub image_mean: Vec<f32>,
    #[serde(default = "default_image_std")]
    pub image_std: Vec<f32>,
}

fn default_size() -> u32 {
    224
}

fn default_do_resize() -> bool {
    true
}

fn default_do_center_crop() -> bool {
    true
}

fn default_crop_size() -> u32 {
    224
}

fn default_do_rescale() -> bool {
    true
}

fn default_rescale_factor() -> f32 {
    1.0 / 255.0
}

fn default_do_normalize() -> bool {
    true
}

fn default_image_mean() -> Vec<f32> {
    vec![0.48145466, 0.4578275, 0.40821073]
}

fn default_image_std() -> Vec<f32> {
    vec![0.26862954, 0.2613026, 0.2757771]
}

impl ImageProcessor {
    pub fn from_pretrained(clip_id: &str) -> Result<Self> {
        let api = Api::new().map_err(|e| candle::Error::Msg(e.to_string()))?;
        let api = api.model(clip_id.to_string());
        let config_filename = api
            .get("preprocessor_config.json")
            .map_err(|e| candle::Error::Msg(e.to_string()))?;
        let image_processor =
            serde_json::from_slice(&std::fs::read(config_filename).map_err(candle::Error::Io)?)
                .map_err(|e| candle::Error::Msg(e.to_string()))?;
        Ok(image_processor)
    }

    pub fn from_hf_preprocessor_config(hf_preprocessor_config: &HFPreProcessorConfig) -> Self {
        Self {
            size: hf_preprocessor_config.size["shortest_edge"] as u32,
            do_resize: hf_preprocessor_config.do_resize,
            do_center_crop: hf_preprocessor_config.do_center_crop,
            crop_size: hf_preprocessor_config.crop_size["height"] as u32,
            do_rescale: hf_preprocessor_config.do_rescale,
            rescale_factor: hf_preprocessor_config.rescale_factor,
            do_normalize: hf_preprocessor_config.do_normalize,
            image_mean: hf_preprocessor_config.image_mean.clone(),
            image_std: hf_preprocessor_config.image_std.clone(),
        }
    }

    ///shortest edge to self.resize, other edge is resized to maintain aspect ratio
    pub fn resize(&self, image: &DynamicImage) -> DynamicImage {
        let (width, height) = image.dimensions();
        let size = self.size;
        if width == size && height == size {
            image.clone()
        } else {
            let (new_width, new_height) = if width < height {
                (
                    size,
                    (((size * height) as f32) / width as f32).ceil() as u32,
                )
            } else {
                (
                    (((size * width) as f32) / height as f32).ceil() as u32,
                    size,
                )
            };
            image.resize(
                new_width,
                new_height,
                image::imageops::FilterType::CatmullRom,
            )
        }
    }

    pub fn center_crop(&self, image: &DynamicImage) -> DynamicImage {
        let (width, height) = image.dimensions();
        let crop_size = self.crop_size;
        let (left, top) = calculate_middle((width, height), (crop_size, crop_size));
        image.crop_imm(left, top, crop_size, crop_size)
    }

    pub fn to_tensor(&self, image: &DynamicImage) -> Result<Tensor> {
        let img = image.to_rgb8().into_raw();
        let (width, height) = image.dimensions();
        Tensor::from_vec(img, (height as usize, width as usize, 3), &Device::Cpu)?
            .to_dtype(DType::F32) // only for internal compute
    }

    pub fn rescale(&self, tensor: &Tensor) -> Result<Tensor> {
        let rescale_factor = self.rescale_factor as f64;
        tensor.affine(rescale_factor, 0.0)
    }

    pub fn normalize(&self, tensor: &Tensor) -> Result<Tensor> {
        let image_mean = self.image_mean.clone();
        let image_std = self.image_std.clone();
        let mean = Tensor::from_vec(image_mean, (3,), &Device::Cpu)?;
        let std = Tensor::from_vec(image_std, (3,), &Device::Cpu)?;
        tensor.broadcast_sub(&mean)?.broadcast_div(&std)
    }

    pub fn to_channel_dimension_format(&self, tensor: &Tensor) -> Result<Tensor> {
        tensor.permute((2, 0, 1))
    }

    pub fn preprocess(&self, image: &DynamicImage) -> Result<Tensor> {
        let image = if self.do_resize {
            self.resize(image)
        } else {
            image.clone()
        };
        let image = if self.do_center_crop {
            self.center_crop(&image)
        } else {
            image
        };
        let tensor = self.to_tensor(&image)?;
        let tensor = if self.do_rescale {
            self.rescale(&tensor)?
        } else {
            tensor
        };
        let tensor = if self.do_normalize {
            self.normalize(&tensor)?
        } else {
            tensor
        };
        self.to_channel_dimension_format(&tensor)
    }
}

pub fn calculate_middle(image_size: (u32, u32), center_size: (u32, u32)) -> (u32, u32) {
    let (width, height) = image_size;
    let (center_width, center_height) = center_size;
    let left = if width <= center_width {
        0
    } else {
        ((width as f32 - center_width as f32) / 2.0).ceil() as u32
    };
    let top = if height <= center_height {
        0
    } else {
        ((height as f32 - center_height as f32) / 2.0).ceil() as u32
    };
    (left, top)
}

pub fn process_image(
    image: &DynamicImage,
    processor: &ImageProcessor,
    llava_config: &LLaVAConfig,
) -> candle::Result<Tensor> {
    if llava_config.image_aspect_ratio == *"square" {
        processor.preprocess(image)?.unsqueeze(0)
    } else if llava_config.image_aspect_ratio == *"anyres" {
        process_anyres_image(image, processor, &llava_config.image_grid_pinpoints)
    } else if llava_config.image_aspect_ratio == *"pad" {
        process_pad_image(image, processor)
    } else {
        bail!("Invalid image aspect ratio")
    }
}

fn process_pad_image(image: &DynamicImage, processor: &ImageProcessor) -> Result<Tensor> {
    let mean_color = processor
        .image_mean
        .iter()
        .map(|x| ((*x) * 255.0) as u8)
        .collect::<Vec<u8>>();
    let mean_color = Rgb::from([mean_color[0], mean_color[1], mean_color[2]]);
    let image_padded = expand2square(image, mean_color);
    processor.preprocess(&image_padded)
}

fn process_anyres_image(
    image: &DynamicImage,
    processor: &ImageProcessor,
    grid_pinpoints: &[(u32, u32)],
) -> Result<Tensor> {
    let original_size = image.dimensions();
    let best_resolution = select_best_resolution(original_size, grid_pinpoints);
    let image_padded = resize_and_pad_image(image, best_resolution);
    let image_original_resize = image.resize_exact(
        processor.size,
        processor.size,
        image::imageops::FilterType::CatmullRom,
    );
    let mut patches = vec![image_original_resize];
    for patch in divide_to_patches(&image_padded, processor.crop_size) {
        patches.push(patch);
    }
    let tensors = patches
        .iter()
        .map(|patch| processor.preprocess(patch))
        .collect::<Result<Vec<Tensor>>>()?;
    Tensor::stack(&tensors, 0)
}

fn expand2square(image: &DynamicImage, background_color: Rgb<u8>) -> DynamicImage {
    let (width, height) = image.dimensions();
    match width.cmp(&height) {
        std::cmp::Ordering::Less => {
            let mut new_image =
                DynamicImage::from(RgbImage::from_pixel(height, height, background_color));
            overlay(&mut new_image, image, ((height - width) / 2) as i64, 0);
            new_image
        }
        std::cmp::Ordering::Equal => image.clone(),
        std::cmp::Ordering::Greater => {
            let mut new_image =
                DynamicImage::from(RgbImage::from_pixel(width, width, background_color));
            overlay(&mut new_image, image, 0, ((width - height) / 2) as i64);
            new_image
        }
    }
}

fn resize_and_pad_image(image: &DynamicImage, target_resolution: (u32, u32)) -> DynamicImage {
    let (original_width, original_height) = image.dimensions();
    let original_width_f = original_width as f32;
    let original_height_f = original_height as f32;
    let (target_width, target_height) = target_resolution;
    let target_width_f = target_width as f32;
    let target_height_f = target_height as f32;
    let scale_w = target_width_f / original_width_f;
    let scale_h = target_height_f / original_height_f;
    let (new_width, new_height) = if scale_w < scale_h {
        (
            target_width,
            min((original_height_f * scale_w).ceil() as u32, target_height),
        )
    } else {
        (
            min((original_width_f * scale_h).ceil() as u32, target_width),
            target_height,
        )
    };
    let resized_image = image.resize_exact(
        new_width,
        new_height,
        image::imageops::FilterType::CatmullRom,
    );
    let mut new_image = DynamicImage::new_rgb8(target_width, target_height);
    let (paste_x, paste_y) =
        calculate_middle((target_width, target_height), (new_width, new_height));
    overlay(
        &mut new_image,
        &resized_image,
        paste_x.into(),
        paste_y.into(),
    );
    new_image
}

fn divide_to_patches(image: &DynamicImage, patch_size: u32) -> Vec<DynamicImage> {
    let (width, height) = image.dimensions();
    let mut patches = Vec::new();
    for y in (0..height).step_by(patch_size as usize) {
        for x in (0..width).step_by(patch_size as usize) {
            let patch = image.crop_imm(x, y, patch_size, patch_size);
            patches.push(patch);
        }
    }
    patches
}