summaryrefslogtreecommitdiff
path: root/candle-examples/examples/onnx/main.rs
blob: d3b0f8f8893107ffa3b439534fb2607d5ecf89a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

#[cfg(feature = "accelerate")]
extern crate accelerate_src;

use candle::{IndexOp, D};
use clap::{Parser, ValueEnum};

#[derive(Clone, Copy, Debug, ValueEnum)]
enum Which {
    SqueezeNet,
    EfficientNet,
}

#[derive(Parser)]
struct Args {
    #[arg(long)]
    image: String,

    #[arg(long)]
    model: Option<String>,

    /// The model to be used.
    #[arg(value_enum, long, default_value_t = Which::SqueezeNet)]
    which: Which,
}

pub fn main() -> anyhow::Result<()> {
    let args = Args::parse();
    let image = candle_examples::imagenet::load_image224(args.image)?;
    let image = match args.which {
        Which::SqueezeNet => image,
        Which::EfficientNet => image.permute((1, 2, 0))?,
    };

    println!("loaded image {image:?}");

    let model = match args.model {
        Some(model) => std::path::PathBuf::from(model),
        None => match args.which {
            Which::SqueezeNet => hf_hub::api::sync::Api::new()?
                .model("lmz/candle-onnx".into())
                .get("squeezenet1.1-7.onnx")?,
            Which::EfficientNet => hf_hub::api::sync::Api::new()?
                .model("onnx/EfficientNet-Lite4".into())
                .get("efficientnet-lite4-11.onnx")?,
        },
    };

    let model = candle_onnx::read_file(model)?;
    let graph = model.graph.as_ref().unwrap();
    let mut inputs = std::collections::HashMap::new();
    inputs.insert(graph.input[0].name.to_string(), image.unsqueeze(0)?);
    let mut outputs = candle_onnx::simple_eval(&model, inputs)?;
    let output = outputs.remove(&graph.output[0].name).unwrap();
    let prs = match args.which {
        Which::SqueezeNet => candle_nn::ops::softmax(&output, D::Minus1)?,
        Which::EfficientNet => output,
    };
    let prs = prs.i(0)?.to_vec1::<f32>()?;

    // Sort the predictions and take the top 5
    let mut top: Vec<_> = prs.iter().enumerate().collect();
    top.sort_by(|a, b| b.1.partial_cmp(a.1).unwrap());
    let top = top.into_iter().take(5).collect::<Vec<_>>();

    // Print the top predictions
    for &(i, p) in &top {
        println!(
            "{:50}: {:.2}%",
            candle_examples::imagenet::CLASSES[i],
            p * 100.0
        );
    }

    Ok(())
}