1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
|
import gymnasium as gym
import numpy as np
from collections import deque
from PIL import Image
from multiprocessing import Process, Pipe
# atari_wrappers.py
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max=30):
"""Sample initial states by taking random number of no-ops on reset.
No-op is assumed to be action 0.
"""
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
def reset(self):
""" Do no-op action for a number of steps in [1, noop_max]."""
self.env.reset()
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) #pylint: disable=E1101
assert noops > 0
obs = None
for _ in range(noops):
obs, _, done, _ = self.env.step(0)
if done:
obs = self.env.reset()
return obs
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
"""Take action on reset for environments that are fixed until firing."""
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
def reset(self):
self.env.reset()
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset()
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset()
return obs
class ImageSaver(gym.Wrapper):
def __init__(self, env, img_path, rank):
gym.Wrapper.__init__(self, env)
self._cnt = 0
self._img_path = img_path
self._rank = rank
def step(self, action):
step_result = self.env.step(action)
obs, _, _, _ = step_result
img = Image.fromarray(obs, 'RGB')
img.save('%s/out%d-%05d.png' % (self._img_path, self._rank, self._cnt))
self._cnt += 1
return step_result
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
"""Make end-of-life == end-of-episode, but only reset on true game over.
Done by DeepMind for the DQN and co. since it helps value estimation.
"""
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
# check current lives, make loss of life terminal,
# then update lives to handle bonus lives
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
# for Qbert sometimes we stay in lives == 0 condition for a few frames
# so its important to keep lives > 0, so that we only reset once
# the environment advertises done.
done = True
self.lives = lives
return obs, reward, done, info
def reset(self):
"""Reset only when lives are exhausted.
This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.
"""
if self.was_real_done:
obs = self.env.reset()
else:
# no-op step to advance from terminal/lost life state
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env, skip=4):
"""Return only every `skip`-th frame"""
gym.Wrapper.__init__(self, env)
# most recent raw observations (for max pooling across time steps)
self._obs_buffer = deque(maxlen=2)
self._skip = skip
def step(self, action):
"""Repeat action, sum reward, and max over last observations."""
total_reward = 0.0
done = None
for _ in range(self._skip):
obs, reward, done, info = self.env.step(action)
self._obs_buffer.append(obs)
total_reward += reward
if done:
break
max_frame = np.max(np.stack(self._obs_buffer), axis=0)
return max_frame, total_reward, done, info
def reset(self):
"""Clear past frame buffer and init. to first obs. from inner env."""
self._obs_buffer.clear()
obs = self.env.reset()
self._obs_buffer.append(obs)
return obs
class ClipRewardEnv(gym.RewardWrapper):
def reward(self, reward):
"""Bin reward to {+1, 0, -1} by its sign."""
return np.sign(reward)
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env):
"""Warp frames to 84x84 as done in the Nature paper and later work."""
gym.ObservationWrapper.__init__(self, env)
self.res = 84
self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self.res, self.res, 1), dtype='uint8')
def observation(self, obs):
frame = np.dot(obs.astype('float32'), np.array([0.299, 0.587, 0.114], 'float32'))
frame = np.array(Image.fromarray(frame).resize((self.res, self.res),
resample=Image.BILINEAR), dtype=np.uint8)
return frame.reshape((self.res, self.res, 1))
class FrameStack(gym.Wrapper):
def __init__(self, env, k):
"""Buffer observations and stack across channels (last axis)."""
gym.Wrapper.__init__(self, env)
self.k = k
self.frames = deque([], maxlen=k)
shp = env.observation_space.shape
assert shp[2] == 1 # can only stack 1-channel frames
self.observation_space = gym.spaces.Box(low=0, high=255, shape=(shp[0], shp[1], k), dtype='uint8')
def reset(self):
"""Clear buffer and re-fill by duplicating the first observation."""
ob = self.env.reset()
for _ in range(self.k): self.frames.append(ob)
return self.observation()
def step(self, action):
ob, reward, done, info = self.env.step(action)
self.frames.append(ob)
return self.observation(), reward, done, info
def observation(self):
assert len(self.frames) == self.k
return np.concatenate(self.frames, axis=2)
def wrap_deepmind(env, episode_life=True, clip_rewards=True):
"""Configure environment for DeepMind-style Atari.
Note: this does not include frame stacking!"""
assert 'NoFrameskip' in env.spec.id # required for DeepMind-style skip
if episode_life:
env = EpisodicLifeEnv(env)
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env)
if clip_rewards:
env = ClipRewardEnv(env)
return env
# envs.py
def make_env(env_id, img_dir, seed, rank):
def _thunk():
env = gym.make(env_id)
env.reset(seed=(seed + rank))
if img_dir is not None:
env = ImageSaver(env, img_dir, rank)
env = wrap_deepmind(env)
env = WrapPyTorch(env)
return env
return _thunk
class WrapPyTorch(gym.ObservationWrapper):
def __init__(self, env=None):
super(WrapPyTorch, self).__init__(env)
self.observation_space = gym.spaces.Box(0.0, 1.0, [1, 84, 84], dtype='float32')
def observation(self, observation):
return observation.transpose(2, 0, 1)
# vecenv.py
class VecEnv(object):
"""
Vectorized environment base class
"""
def step(self, vac):
"""
Apply sequence of actions to sequence of environments
actions -> (observations, rewards, news)
where 'news' is a boolean vector indicating whether each element is new.
"""
raise NotImplementedError
def reset(self):
"""
Reset all environments
"""
raise NotImplementedError
def close(self):
pass
# subproc_vec_env.py
def worker(remote, env_fn_wrapper):
env = env_fn_wrapper.x()
while True:
cmd, data = remote.recv()
if cmd == 'step':
ob, reward, done, info = env.step(data)
if done:
ob = env.reset()
remote.send((ob, reward, done, info))
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.action_space, env.observation_space))
else:
raise NotImplementedError
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class SubprocVecEnv(VecEnv):
def __init__(self, env_fns):
"""
envs: list of gym environments to run in subprocesses
"""
nenvs = len(env_fns)
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, CloudpickleWrapper(env_fn)))
for (work_remote, env_fn) in zip(self.work_remotes, env_fns)]
for p in self.ps:
p.start()
self.remotes[0].send(('get_spaces', None))
self.action_space, self.observation_space = self.remotes[0].recv()
def step(self, actions):
for remote, action in zip(self.remotes, actions):
remote.send(('step', action))
results = [remote.recv() for remote in self.remotes]
obs, rews, dones, infos = zip(*results)
return np.stack(obs), np.stack(rews), np.stack(dones), infos
def reset(self):
for remote in self.remotes:
remote.send(('reset', None))
return np.stack([remote.recv() for remote in self.remotes])
def close(self):
for remote in self.remotes:
remote.send(('close', None))
for p in self.ps:
p.join()
@property
def num_envs(self):
return len(self.remotes)
# Create the environment.
def make(env_name, img_dir, num_processes):
envs = SubprocVecEnv([
make_env(env_name, img_dir, 1337, i) for i in range(num_processes)
])
return envs
|