1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
use std::collections::VecDeque;
use rand::distributions::Uniform;
use rand::{thread_rng, Rng};
use candle::{DType, Device, Module, Result, Tensor};
use candle_nn::loss::mse;
use candle_nn::{linear, seq, Activation, AdamW, Optimizer, VarBuilder, VarMap};
use crate::gym_env::GymEnv;
const DEVICE: Device = Device::Cpu;
const EPISODES: usize = 200;
const BATCH_SIZE: usize = 64;
const GAMMA: f64 = 0.99;
const LEARNING_RATE: f64 = 0.01;
pub fn run() -> Result<()> {
let env = GymEnv::new("CartPole-v1")?;
// Build the model that predicts the estimated rewards given a specific state.
let var_map = VarMap::new();
let vb = VarBuilder::from_varmap(&var_map, DType::F32, &DEVICE);
let observation_space = *env.observation_space().first().unwrap();
let model = seq()
.add(linear(observation_space, 64, vb.pp("linear_in"))?)
.add(Activation::Relu)
.add(linear(64, env.action_space(), vb.pp("linear_out"))?);
let mut optimizer = AdamW::new_lr(var_map.all_vars(), LEARNING_RATE)?;
// Initialize the model's memory.
let mut memory = VecDeque::with_capacity(10000);
// Start the training loop.
let mut state = env.reset(0)?;
let mut episode = 0;
let mut accumulate_rewards = 0.0;
while episode < EPISODES {
// Given the current state, predict the estimated rewards, and take the
// action that is expected to return the most rewards.
let estimated_rewards = model.forward(&state.unsqueeze(0)?)?;
let action: u32 = estimated_rewards.squeeze(0)?.argmax(0)?.to_scalar()?;
// Take that action in the environment, and memorize the outcome:
// - the state for which the action was taken
// - the action taken
// - the new state resulting of taking that action
// - the actual rewards of taking that action
// - whether the environment reached a terminal state or not (e.g. game over)
let step = env.step(action)?;
accumulate_rewards += step.reward;
memory.push_back((
state,
action,
step.state.clone(),
step.reward,
step.terminated || step.truncated,
));
state = step.state;
// If there's enough entries in the memory, perform a learning step, where
// BATCH_SIZE transitions will be sampled from the memory and will be
// fed to the model so that it performs a backward pass.
if memory.len() > BATCH_SIZE {
// Sample randomly from the memory.
let batch = thread_rng()
.sample_iter(Uniform::from(0..memory.len()))
.take(BATCH_SIZE)
.map(|i| memory.get(i).unwrap().clone())
.collect::<Vec<_>>();
// Group all the samples together into tensors with the appropriate shape.
let states: Vec<_> = batch.iter().map(|e| e.0.clone()).collect();
let states = Tensor::stack(&states, 0)?;
let actions = batch.iter().map(|e| e.1);
let actions = Tensor::from_iter(actions, &DEVICE)?.unsqueeze(1)?;
let next_states: Vec<_> = batch.iter().map(|e| e.2.clone()).collect();
let next_states = Tensor::stack(&next_states, 0)?;
let rewards = batch.iter().map(|e| e.3 as f32);
let rewards = Tensor::from_iter(rewards, &DEVICE)?.unsqueeze(1)?;
let non_final_mask = batch.iter().map(|e| !e.4 as u8 as f32);
let non_final_mask = Tensor::from_iter(non_final_mask, &DEVICE)?.unsqueeze(1)?;
// Get the estimated rewards for the actions that where taken at each step.
let estimated_rewards = model.forward(&states)?;
let x = estimated_rewards.gather(&actions, 1)?;
// Get the maximum expected rewards for the next state, apply them a discount rate
// GAMMA and add them to the rewards that were actually gathered on the current state.
// If the next state is a terminal state, just omit maximum estimated
// rewards for that state.
let expected_rewards = model.forward(&next_states)?.detach();
let y = expected_rewards.max_keepdim(1)?;
let y = (y * GAMMA * non_final_mask + rewards)?;
// Compare the estimated rewards with the maximum expected rewards and
// perform the backward step.
let loss = mse(&x, &y)?;
optimizer.backward_step(&loss)?;
}
// If we are on a terminal state, reset the environment and log how it went.
if step.terminated || step.truncated {
episode += 1;
println!("Episode {episode} | Rewards {}", accumulate_rewards as i64);
state = env.reset(0)?;
accumulate_rewards = 0.0;
}
}
Ok(())
}
|