1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
//! SAM: Segment Anything Model
//! https://github.com/facebookresearch/segment-anything
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
pub mod model_image_encoder;
pub mod model_mask_decoder;
pub mod model_prompt_encoder;
pub mod model_sam;
pub mod model_transformer;
use candle::{DType, Result, Tensor};
use candle_nn::{Linear, Module, VarBuilder};
use clap::Parser;
pub fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
if bias {
candle_nn::linear(in_dim, out_dim, vb)
} else {
candle_nn::linear_no_bias(in_dim, out_dim, vb)
}
}
#[derive(Debug)]
pub struct LayerNorm2d {
weight: Tensor,
bias: Tensor,
num_channels: usize,
eps: f64,
}
impl LayerNorm2d {
pub fn new(num_channels: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
let weight = vb.get(num_channels, "weight")?;
let bias = vb.get(num_channels, "bias")?;
Ok(Self {
weight,
bias,
num_channels,
eps,
})
}
}
impl Module for LayerNorm2d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let u = xs.mean_keepdim(1)?;
let xs = xs.broadcast_sub(&u)?;
let s = xs.sqr()?.mean_keepdim(1)?;
let xs = xs.broadcast_div(&(s + self.eps)?.sqrt()?)?;
xs.broadcast_mul(&self.weight.reshape((1, self.num_channels, 1, 1))?)?
.broadcast_add(&self.bias.reshape((1, self.num_channels, 1, 1))?)
}
}
#[derive(Debug)]
pub struct MlpBlock {
lin1: Linear,
lin2: Linear,
activation: candle_nn::Activation,
}
impl MlpBlock {
pub fn new(
embedding_dim: usize,
mlp_dim: usize,
activation: candle_nn::Activation,
vb: VarBuilder,
) -> Result<Self> {
let lin1 = candle_nn::linear(embedding_dim, mlp_dim, vb.pp("lin1"))?;
let lin2 = candle_nn::linear(mlp_dim, embedding_dim, vb.pp("lin2"))?;
Ok(Self {
lin1,
lin2,
activation,
})
}
}
impl Module for MlpBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.lin1)?
.apply(&self.activation)?
.apply(&self.lin2)
}
}
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
image: String,
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(long)]
generate_masks: bool,
#[arg(long, default_value_t = 0.5)]
point_x: f64,
#[arg(long, default_value_t = 0.5)]
point_y: f64,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let (image, initial_h, initial_w) = if args.image.ends_with(".safetensors") {
let mut tensors = candle::safetensors::load(&args.image, &device)?;
let image = match tensors.remove("image") {
Some(image) => image,
None => {
if tensors.len() != 1 {
anyhow::bail!("multiple tensors in '{}'", args.image)
}
tensors.into_values().next().unwrap()
}
};
let image = if image.rank() == 4 {
image.get(0)?
} else {
image
};
let (_c, h, w) = image.dims3()?;
(image, h, w)
} else {
let (image, h, w) = candle_examples::load_image(&args.image, Some(model_sam::IMAGE_SIZE))?;
(image.to_device(&device)?, h, w)
};
println!("loaded image {image:?}");
let model = match args.model {
Some(model) => std::path::PathBuf::from(model),
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-sam".to_string());
api.get("sam_vit_b_01ec64.safetensors")?
}
};
let weights = unsafe { candle::safetensors::MmapedFile::new(model)? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device);
let sam = model_sam::Sam::new(768, 12, 12, &[2, 5, 8, 11], vb)?; // sam_vit_b
if args.generate_masks {
// Default options similar to the Python version.
sam.generate_masks(
&image,
/* points_per_side */ 32,
/* crop_n_layer */ 0,
/* crop_overlap_ratio */ 512. / 1500.,
/* crop_n_points_downscale_factor */ 1,
)?
} else {
let point = Some((args.point_x, args.point_y));
let (mask, iou_predictions) = sam.forward(&image, point, false)?;
println!("mask:\n{mask}");
println!("iou_predictions: {iou_predictions:?}");
// Save the mask as an image.
let mask = (mask.ge(&mask.zeros_like()?)? * 255.)?;
let (_one, h, w) = mask.dims3()?;
let mask = mask.expand((3, h, w))?;
candle_examples::save_image_resize(&mask, "sam_mask.png", initial_h, initial_w)?;
if !args.image.ends_with(".safetensors") {
let mut img = image::io::Reader::open(&args.image)?
.decode()
.map_err(candle::Error::wrap)?;
let mask_pixels = mask.permute((1, 2, 0))?.flatten_all()?.to_vec1::<u8>()?;
let mask_img: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
match image::ImageBuffer::from_raw(w as u32, h as u32, mask_pixels) {
Some(image) => image,
None => anyhow::bail!("error saving merged image"),
};
let mask_img = image::DynamicImage::from(mask_img).resize_to_fill(
img.width(),
img.height(),
image::imageops::FilterType::CatmullRom,
);
for x in 0..img.width() {
for y in 0..img.height() {
let mask_p = imageproc::drawing::Canvas::get_pixel(&mask_img, x, y);
if mask_p.0[0] > 100 {
let mut img_p = imageproc::drawing::Canvas::get_pixel(&img, x, y);
img_p.0[2] = 255 - (255 - img_p.0[2]) / 2;
img_p.0[1] /= 2;
img_p.0[0] /= 2;
imageproc::drawing::Canvas::draw_pixel(&mut img, x, y, img_p)
}
}
}
match point {
Some((x, y)) => {
let (x, y) = (
(x * img.width() as f64) as i32,
(y * img.height() as f64) as i32,
);
imageproc::drawing::draw_filled_circle(
&img,
(x, y),
3,
image::Rgba([255, 0, 0, 200]),
)
.save("sam_merged.jpg")?
}
None => img.save("sam_merged.jpg")?,
};
}
}
Ok(())
}
|