summaryrefslogtreecommitdiff
path: root/candle-examples/examples/stable-diffusion-3/clip.rs
blob: 4891a1baec5e89bb10c5253ef305e5cbb8667d54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use anyhow::{Error as E, Ok, Result};
use candle::{DType, IndexOp, Module, Tensor, D};
use candle_transformers::models::{stable_diffusion, t5};
use std::path::PathBuf;
use tokenizers::tokenizer::Tokenizer;

struct ClipWithTokenizer {
    clip: stable_diffusion::clip::ClipTextTransformer,
    config: stable_diffusion::clip::Config,
    tokenizer: Tokenizer,
    max_position_embeddings: usize,
}

impl ClipWithTokenizer {
    fn new(
        vb: candle_nn::VarBuilder,
        config: stable_diffusion::clip::Config,
        tokenizer_path: &str,
        max_position_embeddings: usize,
    ) -> Result<Self> {
        let clip = stable_diffusion::clip::ClipTextTransformer::new(vb, &config)?;
        let path_buf = hf_hub::api::sync::Api::new()?
            .model(tokenizer_path.to_string())
            .get("tokenizer.json")?;
        let tokenizer = Tokenizer::from_file(path_buf.to_str().ok_or(E::msg(
            "Failed to serialize huggingface PathBuf of CLIP tokenizer",
        ))?)
        .map_err(E::msg)?;
        Ok(Self {
            clip,
            config,
            tokenizer,
            max_position_embeddings,
        })
    }

    fn encode_text_to_embedding(
        &self,
        prompt: &str,
        device: &candle::Device,
    ) -> Result<(Tensor, Tensor)> {
        let pad_id = match &self.config.pad_with {
            Some(padding) => *self
                .tokenizer
                .get_vocab(true)
                .get(padding.as_str())
                .ok_or(E::msg("Failed to tokenize CLIP padding."))?,
            None => *self
                .tokenizer
                .get_vocab(true)
                .get("<|endoftext|>")
                .ok_or(E::msg("Failed to tokenize CLIP end-of-text."))?,
        };

        let mut tokens = self
            .tokenizer
            .encode(prompt, true)
            .map_err(E::msg)?
            .get_ids()
            .to_vec();

        let eos_position = tokens.len() - 1;

        while tokens.len() < self.max_position_embeddings {
            tokens.push(pad_id)
        }
        let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?;
        let (text_embeddings, text_embeddings_penultimate) = self
            .clip
            .forward_until_encoder_layer(&tokens, usize::MAX, -2)?;
        let text_embeddings_pooled = text_embeddings.i((0, eos_position, ..))?;

        Ok((text_embeddings_penultimate, text_embeddings_pooled))
    }
}

struct T5WithTokenizer {
    t5: t5::T5EncoderModel,
    tokenizer: Tokenizer,
    max_position_embeddings: usize,
}

impl T5WithTokenizer {
    fn new(vb: candle_nn::VarBuilder, max_position_embeddings: usize) -> Result<Self> {
        let api = hf_hub::api::sync::Api::new()?;
        let repo = api.repo(hf_hub::Repo::with_revision(
            "google/t5-v1_1-xxl".to_string(),
            hf_hub::RepoType::Model,
            "refs/pr/2".to_string(),
        ));
        let config_filename = repo.get("config.json")?;
        let config = std::fs::read_to_string(config_filename)?;
        let config: t5::Config = serde_json::from_str(&config)?;
        let model = t5::T5EncoderModel::load(vb, &config)?;

        let tokenizer_filename = api
            .model("lmz/mt5-tokenizers".to_string())
            .get("t5-v1_1-xxl.tokenizer.json")?;

        let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
        Ok(Self {
            t5: model,
            tokenizer,
            max_position_embeddings,
        })
    }

    fn encode_text_to_embedding(
        &mut self,
        prompt: &str,
        device: &candle::Device,
    ) -> Result<Tensor> {
        let mut tokens = self
            .tokenizer
            .encode(prompt, true)
            .map_err(E::msg)?
            .get_ids()
            .to_vec();
        tokens.resize(self.max_position_embeddings, 0);
        let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
        let embeddings = self.t5.forward_dt(&input_token_ids, Some(DType::F32))?;
        Ok(embeddings)
    }
}

pub struct StableDiffusion3TripleClipWithTokenizer {
    clip_l: ClipWithTokenizer,
    clip_g: ClipWithTokenizer,
    clip_g_text_projection: candle_nn::Linear,
    t5: T5WithTokenizer,
}

impl StableDiffusion3TripleClipWithTokenizer {
    pub fn new_split(
        clip_g_file: &PathBuf,
        clip_l_file: &PathBuf,
        t5xxl_file: &PathBuf,
        device: &candle::Device,
    ) -> Result<Self> {
        let vb_clip_g = unsafe {
            candle_nn::VarBuilder::from_mmaped_safetensors(&[clip_g_file], DType::F16, device)?
        };
        let vb_clip_l = unsafe {
            candle_nn::VarBuilder::from_mmaped_safetensors(&[clip_l_file], DType::F16, device)?
        };
        let vb_t5 = unsafe {
            candle_nn::VarBuilder::from_mmaped_safetensors(&[t5xxl_file], DType::F16, device)?
        };
        let max_position_embeddings = 77usize;
        let clip_l = ClipWithTokenizer::new(
            vb_clip_l,
            stable_diffusion::clip::Config::sdxl(),
            "openai/clip-vit-large-patch14",
            max_position_embeddings,
        )?;

        let text_projection =
            candle_nn::linear_no_bias(1280, 1280, vb_clip_g.pp("text_projection"))?;

        let clip_g = ClipWithTokenizer::new(
            vb_clip_g,
            stable_diffusion::clip::Config::sdxl2(),
            "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
            max_position_embeddings,
        )?;

        let t5 = T5WithTokenizer::new(vb_t5, max_position_embeddings)?;
        Ok(Self {
            clip_l,
            clip_g,
            clip_g_text_projection: text_projection,
            t5,
        })
    }

    pub fn new(vb: candle_nn::VarBuilder) -> Result<Self> {
        let max_position_embeddings = 77usize;
        let clip_l = ClipWithTokenizer::new(
            vb.pp("clip_l.transformer"),
            stable_diffusion::clip::Config::sdxl(),
            "openai/clip-vit-large-patch14",
            max_position_embeddings,
        )?;

        let clip_g = ClipWithTokenizer::new(
            vb.pp("clip_g.transformer"),
            stable_diffusion::clip::Config::sdxl2(),
            "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
            max_position_embeddings,
        )?;

        let text_projection =
            candle_nn::linear_no_bias(1280, 1280, vb.pp("clip_g.transformer.text_projection"))?;

        let t5 = T5WithTokenizer::new(vb.pp("t5xxl.transformer"), max_position_embeddings)?;
        Ok(Self {
            clip_l,
            clip_g,
            clip_g_text_projection: text_projection,
            t5,
        })
    }

    pub fn encode_text_to_embedding(
        &mut self,
        prompt: &str,
        device: &candle::Device,
    ) -> Result<(Tensor, Tensor)> {
        let (clip_l_embeddings, clip_l_embeddings_pooled) =
            self.clip_l.encode_text_to_embedding(prompt, device)?;
        let (clip_g_embeddings, clip_g_embeddings_pooled) =
            self.clip_g.encode_text_to_embedding(prompt, device)?;

        let clip_g_embeddings_pooled = self
            .clip_g_text_projection
            .forward(&clip_g_embeddings_pooled.unsqueeze(0)?)?
            .squeeze(0)?;

        let y = Tensor::cat(&[&clip_l_embeddings_pooled, &clip_g_embeddings_pooled], 0)?
            .unsqueeze(0)?;
        let clip_embeddings_concat = Tensor::cat(
            &[&clip_l_embeddings, &clip_g_embeddings],
            D::Minus1,
        )?
        .pad_with_zeros(D::Minus1, 0, 2048)?;

        let t5_embeddings = self
            .t5
            .encode_text_to_embedding(prompt, device)?
            .to_dtype(DType::F16)?;
        let context = Tensor::cat(&[&clip_embeddings_concat, &t5_embeddings], D::Minus2)?;
        Ok((context, y))
    }
}