1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
#![allow(dead_code)]
//! # Denoising Diffusion Implicit Models
//!
//! The Denoising Diffusion Implicit Models (DDIM) is a simple scheduler
//! similar to Denoising Diffusion Probabilistic Models (DDPM). The DDPM
//! generative process is the reverse of a Markovian process, DDIM generalizes
//! this to non-Markovian guidance.
//!
//! Denoising Diffusion Implicit Models, J. Song et al, 2020.
//! https://arxiv.org/abs/2010.02502
use crate::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType};
use candle::{Result, Tensor};
/// The configuration for the DDIM scheduler.
#[derive(Debug, Clone, Copy)]
pub struct DDIMSchedulerConfig {
/// The value of beta at the beginning of training.
pub beta_start: f64,
/// The value of beta at the end of training.
pub beta_end: f64,
/// How beta evolved during training.
pub beta_schedule: BetaSchedule,
/// The amount of noise to be added at each step.
pub eta: f64,
/// Adjust the indexes of the inference schedule by this value.
pub steps_offset: usize,
/// prediction type of the scheduler function, one of `epsilon` (predicting
/// the noise of the diffusion process), `sample` (directly predicting the noisy sample`)
/// or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
pub prediction_type: PredictionType,
/// number of diffusion steps used to train the model
pub train_timesteps: usize,
}
impl Default for DDIMSchedulerConfig {
fn default() -> Self {
Self {
beta_start: 0.00085f64,
beta_end: 0.012f64,
beta_schedule: BetaSchedule::ScaledLinear,
eta: 0.,
steps_offset: 1,
prediction_type: PredictionType::Epsilon,
train_timesteps: 1000,
}
}
}
/// The DDIM scheduler.
#[derive(Debug, Clone)]
pub struct DDIMScheduler {
timesteps: Vec<usize>,
alphas_cumprod: Vec<f64>,
step_ratio: usize,
init_noise_sigma: f64,
pub config: DDIMSchedulerConfig,
}
// clip_sample: False, set_alpha_to_one: False
impl DDIMScheduler {
/// Creates a new DDIM scheduler given the number of steps to be
/// used for inference as well as the number of steps that was used
/// during training.
pub fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> {
let step_ratio = config.train_timesteps / inference_steps;
let timesteps: Vec<usize> = (0..(inference_steps))
.map(|s| s * step_ratio + config.steps_offset)
.rev()
.collect();
let betas = match config.beta_schedule {
BetaSchedule::ScaledLinear => crate::utils::linspace(
config.beta_start.sqrt(),
config.beta_end.sqrt(),
config.train_timesteps,
)?
.sqr()?,
BetaSchedule::Linear => {
crate::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)?
}
BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?,
};
let betas = betas.to_vec1::<f64>()?;
let mut alphas_cumprod = Vec::with_capacity(betas.len());
for &beta in betas.iter() {
let alpha = 1.0 - beta;
alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64))
}
Ok(Self {
alphas_cumprod,
timesteps,
step_ratio,
init_noise_sigma: 1.,
config,
})
}
pub fn timesteps(&self) -> &[usize] {
self.timesteps.as_slice()
}
/// Ensures interchangeability with schedulers that need to scale the denoising model input
/// depending on the current timestep.
pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Result<Tensor> {
Ok(sample)
}
/// Performs a backward step during inference.
pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let timestep = if timestep >= self.alphas_cumprod.len() {
timestep - 1
} else {
timestep
};
// https://github.com/huggingface/diffusers/blob/6e099e2c8ce4c4f5c7318e970a8c093dc5c7046e/src/diffusers/schedulers/scheduling_ddim.py#L195
let prev_timestep = if timestep > self.step_ratio {
timestep - self.step_ratio
} else {
0
};
let alpha_prod_t = self.alphas_cumprod[timestep];
let alpha_prod_t_prev = self.alphas_cumprod[prev_timestep];
let beta_prod_t = 1. - alpha_prod_t;
let beta_prod_t_prev = 1. - alpha_prod_t_prev;
let (pred_original_sample, pred_epsilon) = match self.config.prediction_type {
PredictionType::Epsilon => {
let pred_original_sample = ((sample - (model_output * beta_prod_t.sqrt())?)?
* (1. / alpha_prod_t.sqrt()))?;
(pred_original_sample, model_output.clone())
}
PredictionType::VPrediction => {
let pred_original_sample =
((sample * alpha_prod_t.sqrt())? - (model_output * beta_prod_t.sqrt())?)?;
let pred_epsilon =
((model_output * alpha_prod_t.sqrt())? + (sample * beta_prod_t.sqrt())?)?;
(pred_original_sample, pred_epsilon)
}
PredictionType::Sample => {
let pred_original_sample = model_output.clone();
let pred_epsilon = ((sample - &pred_original_sample * alpha_prod_t.sqrt())?
* (1. / beta_prod_t.sqrt()))?;
(pred_original_sample, pred_epsilon)
}
};
let variance = (beta_prod_t_prev / beta_prod_t) * (1. - alpha_prod_t / alpha_prod_t_prev);
let std_dev_t = self.config.eta * variance.sqrt();
let pred_sample_direction =
(pred_epsilon * (1. - alpha_prod_t_prev - std_dev_t * std_dev_t).sqrt())?;
let prev_sample =
((pred_original_sample * alpha_prod_t_prev.sqrt())? + pred_sample_direction)?;
if self.config.eta > 0. {
&prev_sample
+ Tensor::randn(
0f32,
std_dev_t as f32,
prev_sample.shape(),
prev_sample.device(),
)?
} else {
Ok(prev_sample)
}
}
pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
let timestep = if timestep >= self.alphas_cumprod.len() {
timestep - 1
} else {
timestep
};
let sqrt_alpha_prod = self.alphas_cumprod[timestep].sqrt();
let sqrt_one_minus_alpha_prod = (1.0 - self.alphas_cumprod[timestep]).sqrt();
(original * sqrt_alpha_prod)? + (noise * sqrt_one_minus_alpha_prod)?
}
pub fn init_noise_sigma(&self) -> f64 {
self.init_noise_sigma
}
}
|