summaryrefslogtreecommitdiff
path: root/candle-examples/examples/stable-diffusion/utils.rs
blob: 5602a9ad5e6bf2f6b6972abfe8910201aea5b04d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
use candle::{Device, Result, Tensor};
use candle_nn::Module;

pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> {
    if steps < 1 {
        candle::bail!("cannot use linspace with steps {steps} <= 1")
    }
    let delta = (stop - start) / (steps - 1) as f64;
    let vs = (0..steps)
        .map(|step| start + step as f64 * delta)
        .collect::<Vec<_>>();
    Tensor::from_vec(vs, steps, &Device::Cpu)
}

/// Saves an image to disk using the image crate, this expects an input with shape
/// (c, width, height).
pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
    let p = p.as_ref();
    let (channel, width, height) = img.dims3()?;
    if channel != 3 {
        candle::bail!("save_image expects an input of shape (3, width, height)")
    }
    let img = img.transpose(0, 1)?.t()?.flatten_all()?;
    let pixels = img.to_vec1::<u8>()?;
    let image: image::ImageBuffer<image::Rgb<u8>, Vec<u8>> =
        match image::ImageBuffer::from_raw(width as u32, height as u32, pixels) {
            Some(image) => image,
            None => candle::bail!("error saving image {p:?}"),
        };
    image.save(p).map_err(candle::Error::wrap)?;
    Ok(())
}

// Wrap the conv2d op to provide some tracing.
#[derive(Debug)]
pub struct Conv2d {
    inner: candle_nn::Conv2d,
    span: tracing::Span,
}

impl Conv2d {
    pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        self.inner.forward(x)
    }
}

pub fn conv2d(
    in_channels: usize,
    out_channels: usize,
    kernel_size: usize,
    cfg: candle_nn::Conv2dConfig,
    vs: candle_nn::VarBuilder,
) -> Result<Conv2d> {
    let span = tracing::span!(tracing::Level::TRACE, "conv2d");
    let inner = candle_nn::conv2d(in_channels, out_channels, kernel_size, cfg, vs)?;
    Ok(Conv2d { inner, span })
}