blob: 056d5a64138347eda918eae3105a6cf5141c2650 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
# candle-yolo-v8: Object Detection and Pose Estimation
This is a port of [Ultralytics
YOLOv8](https://github.com/ultralytics/ultralytics). The implementation is based
on the [tinygrad
version](https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py)
and on the model architecture described in this
[issue](https://github.com/ultralytics/ultralytics/issues/189). The supported
tasks are object detection and pose estimation.
You can try this model online on the [Candle YOLOv8
Space](https://huggingface.co/spaces/lmz/candle-yolo). The model then fully runs
in your browser using WebAssembly - if you use a custom image it will never
leave your phone/computer!
## Running some example
### Object Detection
```bash
cargo run --example yolo-v8 --release -- candle-examples/examples/yolo-v8/assets/bike.jpg
```
This prints details about the detected objects and generates a `bike.pp.jpg` file.

Image source:
[wikimedia](https://commons.wikimedia.org/wiki/File:Leading_group,_Giro_d%27Italia_2021,_Stage_15.jpg).

### Pose Estimation
```bash
cargo run --example yolo-v8 --release -- \
candle-examples/examples/yolo-v8/assets/bike.jpg --task pose
```

### Command-line flags
- `--which`: select the model variant to be used, `n`, `s` , `m`, `l`, or `x` by
increasing size and quality.
- `--task`: `detect` for object detection and `pose` for pose estimation.
- `--legend-size`: the size of the characters to print.
- `--model`: use a local model file rather than downloading it from the hub.
|