summaryrefslogtreecommitdiff
path: root/candle-flash-attn/kernels/utils.h
blob: 2221a2faf3a8d71c6aa799a27f6048be8e463880 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <assert.h>
#include <stdint.h>
#include <stdlib.h>

#include <cuda_fp16.h>

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#include <cuda_bf16.h>
#endif

#include <cute/algorithm/copy.hpp>
#include <cute/algorithm/gemm.hpp>

#include <cutlass/array.h>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/numeric_types.h>

////////////////////////////////////////////////////////////////////////////////////////////////////

namespace flash {

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
inline __device__ uint32_t relu2(const uint32_t x);

template<>
inline __device__ uint32_t relu2<cutlass::half_t>(const uint32_t x) {
    uint32_t res;
    const uint32_t zero = 0u;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
    asm volatile("max.f16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
#else
    asm volatile( \
        "{\n" \
        "\t .reg .f16x2 sela;\n" \
        "\t set.gtu.u32.f16x2 sela, %1, %2;\n" \
        "\t and.b32 %0, sela, %1;\n" 
        "}\n" : "=r"(res) : "r"(x), "r"(zero));
#endif
    return res;
}

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
template<>
inline __device__ uint32_t relu2<cutlass::bfloat16_t>(const uint32_t x) {
    uint32_t res;
    const uint32_t zero = 0u;
    asm volatile("max.bf16x2 %0, %1, %2;\n" : "=r"(res) : "r"(x), "r"(zero));
    return res;
}
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800

template<typename T>
inline __device__ uint32_t convert_relu2(const float2 x);

template<>
inline __device__ uint32_t convert_relu2<cutlass::half_t>(const float2 x) {
    uint32_t res;
    const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
    const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
    asm volatile("cvt.rn.relu.f16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
    return res;
}

template<>
inline __device__ uint32_t convert_relu2<cutlass::bfloat16_t>(const float2 x) {
    uint32_t res;
    const uint32_t a = reinterpret_cast<const uint32_t&>(x.x);
    const uint32_t b = reinterpret_cast<const uint32_t&>(x.y);
    asm volatile("cvt.rn.relu.bf16x2.f32 %0, %1, %2;\n" : "=r"(res) : "r"(b), "r"(a));
    return res;
}

#endif

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
inline __device__ float2 half2_unpack(uint32_t a);

template <>
inline __device__ float2 half2_unpack<__half>(uint32_t a) {
    return __half22float2(reinterpret_cast<__half2 (&)>(a));
}

#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
template <>
inline __device__ float2 half2_unpack<__nv_bfloat16>(uint32_t a) {
    return __bfloat1622float2(reinterpret_cast<__nv_bfloat162 (&)>(a));
}
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert two half2's or bf162's into float, then take their dot product.
template <typename T>
inline __device__ float hfma2_to_float(const uint32_t a, const uint32_t b) {
    float2 af = flash::half2_unpack<T>(a);
    float2 bf = flash::half2_unpack<T>(b);
    return af.x * bf.x + af.y * bf.y;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Converted two vectors of 8 half's or bf16's into float, then take their dot product.
template<typename T>
inline __device__ float hmulsum8(const uint4 a, const uint4 b) {
    float sum;
    sum  = flash::hfma2_to_float<T>(a.x, b.x);
    sum += flash::hfma2_to_float<T>(a.y, b.y);
    sum += flash::hfma2_to_float<T>(a.z, b.z);
    sum += flash::hfma2_to_float<T>(a.w, b.w);
    return sum;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
struct MaxOp {
__device__ inline T operator()(T const & x, T const & y) { return x > y ? x : y; }
};

template <>
struct MaxOp<float> {
// This is slightly faster
__device__ inline float operator()(float const &x, float const &y) { return max(x, y); }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename T>
struct SumOp {
__device__ inline T operator()(T const & x, T const & y) { return x + y; }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<int THREADS>
struct Allreduce {
    static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
    template<typename T, typename Operator>
    static __device__ inline T run(T x, Operator &op) {
        constexpr int OFFSET = THREADS / 2;
        x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
        return Allreduce<OFFSET>::run(x, op);
    }
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<>
struct Allreduce<2> {
template<typename T, typename Operator> 
static __device__ inline T run(T x, Operator &op) {
    x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
    return x;
}
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template<bool A_in_regs=false, bool B_in_regs=false, typename Tensor0, typename Tensor1,
         typename Tensor2, typename Tensor3, typename Tensor4,
         typename TiledMma, typename TiledCopy0, typename TiledCopy1>
inline __device__ void gemm(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsA,
                            Tensor4 const& tCsB, TiledMma tiled_mma,
                            TiledCopy0 smem_thr_copy_A, TiledCopy1 smem_thr_copy_B) {
    CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));                     // MMA_M
    CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));                     // MMA_N
    CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB));                     // MMA_K
    Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
    CUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCrA_copy_view));            // M
    Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
    CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view));            // N
    if (!A_in_regs) { copy(smem_thr_copy_A, tCsA(_, _, _0{}), tCrA_copy_view(_, _, _0{})); }
    if (!B_in_regs) { copy(smem_thr_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{})); }
    #pragma unroll
    for (int i = 0; i < size<2>(tCrA); ++i) {
        if (i < size<2>(tCrA) - 1) {
            if (!A_in_regs) { copy(smem_thr_copy_A, tCsA(_, _, i + 1), tCrA_copy_view(_, _, i + 1)); }
            if (!B_in_regs) { copy(smem_thr_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1)); }
        }
        cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Tensor0, typename Tensor1, typename Tensor2, typename Tensor3,
         typename TiledMma, typename TiledCopy>
inline __device__ void gemm_A_in_regs(Tensor0 &acc, Tensor1 &tCrA, Tensor2 &tCrB, Tensor3 const& tCsB,
                                      TiledMma tiled_mma, TiledCopy smem_thr_copy_B) {
    CUTE_STATIC_ASSERT_V(size<1>(tCrA) == size<1>(acc));                     // MMA_M
    CUTE_STATIC_ASSERT_V(size<1>(tCrB) == size<2>(acc));                     // MMA_N
    CUTE_STATIC_ASSERT_V(size<2>(tCrA) == size<2>(tCrB));                     // MMA_K
    Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
    CUTE_STATIC_ASSERT_V(size<1>(tCsB) == size<1>(tCrB_copy_view));            // N
    copy(smem_thr_copy_B, tCsB(_, _, _0{}), tCrB_copy_view(_, _, _0{}));
    #pragma unroll
    for (int i = 0; i < size<2>(tCrA); ++i) {
        if (i < size<2>(tCrA) - 1) {
            copy(smem_thr_copy_B, tCsB(_, _, i + 1), tCrB_copy_view(_, _, i + 1));
        }
        cute::gemm(tiled_mma, tCrA(_, _, i), tCrB(_, _, i), acc);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
template<typename Layout>
inline __device__ auto convert_layout_acc_rowcol(Layout acc_layout) {
    static_assert(decltype(size<0>(acc_layout))::value == 4);
    static_assert(decltype(rank(acc_layout))::value == 3);
    auto l = logical_divide(acc_layout, Shape<_2>{});  // ((2, 2), MMA_M, MMA_N)
    return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
};

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert rowcol_layout from (nrow=(2, MMA_M), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_M, MMA_N / 2)
// if using m16n8k16, or to ((2, 2, 1), MMA_M, MMA_N) if using m16n8k8.
template<typename MMA_traits, typename Layout>
inline __device__ auto convert_layout_rowcol_Aregs(Layout rowcol_layout) {
    using X = Underscore;
    static_assert(decltype(size<0, 0>(rowcol_layout))::value == 2);
    static_assert(decltype(size<1, 0>(rowcol_layout))::value == 2);
    constexpr int mma_shape_K = get<2>(typename MMA_traits::Shape_MNK{});
    static_assert(mma_shape_K == 8 || mma_shape_K == 16);
    constexpr int MMA_N_divisor = mma_shape_K == 8 ? 1 : 2;
    auto l = logical_divide(rowcol_layout, Shape<X, Shape<X, Int<MMA_N_divisor>>>{});  // ((2, MMA_M), (2, (2, MMA_N / 2)))
    return make_layout(make_layout(get<1, 0>(l), get<0, 0>(l), get<1, 1, 0>(l)),
                       get<0, 1>(l),
                       get<1, 1, 1>(l));
};

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename To_type, typename Engine, typename Layout>
inline __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
    using From_type = typename Engine::value_type;
    constexpr int numel = decltype(size(tensor))::value;
    cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
    // HACK: this requires tensor to be "contiguous"
    auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
    return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Engine, typename Layout>
inline __device__ void relu_(Tensor<Engine, Layout> &tensor) {
    constexpr int numel = decltype(size(tensor))::value;
    static_assert(numel % 2 == 0);
    using value_t = typename Engine::value_type;
    // HACK: this requires tensor to be "contiguous"
    Tensor tensor_uint32 = recast<uint32_t>(tensor);
    #pragma unroll
    for (int i = 0; i < size(tensor_uint32); ++i) {
        tensor_uint32(i) = relu2<value_t>(tensor_uint32(i));
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// On SM80 and above, we can fuse fp32 -> fp16/bf16 conversion and relu into 1 instruction
template <typename To_type, typename Engine, typename Layout>
inline __device__ auto convert_type_relu(Tensor<Engine, Layout> const &tensor) {
    using From_type = typename Engine::value_type;
    static_assert(std::is_same_v<To_type, cutlass::half_t> || std::is_same_v<To_type, cutlass::bfloat16_t>);
    static_assert(std::is_same_v<float, From_type>);
    constexpr int numel = decltype(size(tensor))::value;
    static_assert(numel % 2 == 0);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
    // HACK: this requires tensor to be "contiguous"
    Tensor tensor_float2 = recast<float2>(tensor);
    Tensor out_uint32 = make_tensor<uint32_t>(tensor_float2.layout());
    #pragma unroll
    for (int i = 0; i < size(out_uint32); ++i) {
        out_uint32(i) = convert_relu2<To_type>(tensor_float2(i));
    }
    Tensor out = make_tensor(make_rmem_ptr<To_type>(out_uint32.data()), tensor.layout());
#else
    Tensor out = flash::convert_type<To_type>(tensor);
    flash::relu_(out);
#endif
    return out;
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Blocks until all but N previous cp.async.commit_group operations have committed.
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
// (which is equivalent to commit_group then wait_group 0).
// Instead we just call cp.async.wait_group 0, which is slightly faster.
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
template <int N>
CUTE_HOST_DEVICE
void cp_async_wait() {
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
    asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
#endif
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
          typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
          typename Engine2, typename Layout2, typename Engine3, typename Layout3>
inline __device__ void copy(TiledCopy thr_copy, Tensor<Engine0, Layout0> const &S,
                            Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
                            Tensor<Engine3, Layout3> const &predicate_K, int max_MN=0) {
    CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
    CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
    CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D));                     // MMA
    CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D));                     // MMA_M
    CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D));                     // MMA_K
    // There's no case where !Clear_OOB_K && Clear_OOB_MN
    static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
    #pragma unroll
    for (int m = 0; m < size<1>(S); ++m) {
        if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
            #pragma unroll
            for (int k = 0; k < size<2>(S); ++k) {
                if (Is_even_K || predicate_K(k)) {
                    copy(thr_copy, S(_, m, k), D(_, m, k));
                } else if (Clear_OOB_K) {
                    clear(D(_, m, k));
                }
            }
        } else if (Clear_OOB_MN) {
            clear(D(_, m, _));
        }
    }
    // TD [2023-04-13]: Strange that the code below can cause race condition.
    // I think it's because the copies are under an if statement.
    // if (Is_even_K) {
    //     #pragma unroll
    //     for (int m = 0; m < size<1>(S); ++m) {
    //         if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
    //             copy(thr_copy, S(_, m, _), D(_, m, _));
    //         } else if (Clear_OOB_MN) {
    //             clear(D(_, m, _));
    //         }
    //     }
    // } else {  // It's slightly faster in this case if iterate over K first
    //     #pragma unroll
    //     for (int k = 0; k < size<2>(S); ++k) {
    //         if (predicate_K(k)) {
    //             #pragma unroll
    //             for (int m = 0; m < size<1>(S); ++m) {
    //                 if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
    //                     copy(thr_copy, S(_, m, k), D(_, m, k));
    //                 } else if (Clear_OOB_MN) {
    //                     clear(D(_, m, k));
    //                 }
    //             }
    //         } else if (Clear_OOB_K) {  // There's no case where !Clear_OOB_K && Clear_OOB_MN
    //             if (Clear_OOB_MN || Is_even_MN) {
    //                 clear(D(_, _, k));
    //             } else {
    //                 #pragma unroll
    //                 for (int m = 0; m < size<1>(S); ++m) {
    //                     if (!(Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN)) {
    //                         clear(D(_, m, k));
    //                     }
    //                 }
    //             }
    //         }
    //     }
    // }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

}  // namespace flash