summaryrefslogtreecommitdiff
path: root/candle-metal-kernels/src/random.metal
blob: c1a94199b7360cebd8be1a6af4fa7507da7935a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include <metal_stdlib>
#include <metal_integer>
#include <metal_atomic>

using namespace metal;

// Constants
// 2^32 and 1/2^32. Useful for converting between float and uint.
static constexpr constant ulong UNIF01_NORM32 = 4294967296;
static constexpr constant float UNIF01_INV32 = 2.328306436538696289e-10;
// 2 * pi
static constexpr constant float TWO_PI = 2.0 * M_PI_F;
static constexpr constant int3 S1 = {13, 19, 12};
static constexpr constant int3 S2 = {2, 25, 4};
static constexpr constant int3 S3 = {3, 11, 17};

// Used to prevent bad seeds.
static constexpr constant uint64_t PHI[16] = {
    0x9E3779B97F4A7C15,
    0xF39CC0605CEDC834,
    0x1082276BF3A27251,
    0xF86C6A11D0C18E95,
    0x2767F0B153D27B7F,
    0x0347045B5BF1827F,
    0x01886F0928403002,
    0xC1D64BA40F335E36,
    0xF06AD7AE9717877E,
    0x85839D6EFFBD7DC6,
    0x64D325D1C5371682,
    0xCADD0CCCFDFFBBE1,
    0x626E33B8D04B4331,
    0xBBF73C790D94F79D,
    0x471C4AB3ED3D82A5,
    0xFEC507705E4AE6E5,
};

// Combined Tausworthe and LCG Random Number Generator.
// https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-37-efficient-random-number-generation-and-application
// https://indico.cern.ch/event/93877/contributions/2118070/attachments/1104200/1575343/acat3_revised_final.pdf
struct HybridTaus {

    float state;

    HybridTaus() thread = default;
    HybridTaus() threadgroup = default;
    HybridTaus() device = default;
    HybridTaus() constant = default;

    // Generate seeds for each thread.
    METAL_FUNC static uint4 seed_per_thread(const ulong4 seeds) {
        return uint4(ulong4(seeds) * ulong4(PHI[0], PHI[1], PHI[2], PHI[3]) * ulong4(1099087573UL));
    }

    // Tausworthe generator.
    METAL_FUNC static uint taus(const uint z, const int3 s, const uint M) {
        uint b = (((z << s.x) ^ z) >> s.y);
        return (((z & M) << s.z) ^ b);
    }

    // LCG generator.
    METAL_FUNC static uint lcg(const uint z) {
        return (1664525 * z + 1013904223UL);
    }

    // Initialize the RNG state.
    METAL_FUNC static HybridTaus init(const ulong4 seeds) {
        uint4 seed = seed_per_thread(seeds);

        // Seed #1
        uint z1 = taus(seed.x, S1, 4294967294UL);
        uint z2 = taus(seed.y, S2, 4294967288UL);
        uint z3 = taus(seed.z, S3, 4294967280UL);
        uint z4 = lcg(seed.x);

        // Seed #2
        uint r1 = (z1^z2^z3^z4^seed.y);
        z1 = taus(r1, S1, 429496729UL);
        z2 = taus(r1, S2, 4294967288UL);
        z3 = taus(r1, S3, 429496280UL);
        z4 = lcg(r1);

        // Seed #3
        r1 = (z1^z2^z3^z4^seed.z);
        z1 = taus(r1, S1, 429496729UL);
        z2 = taus(r1, S2, 4294967288UL);
        z3 = taus(r1, S3, 429496280UL);
        z4 = lcg(r1);

        // Seed #4
        r1 = (z1^z2^z3^z4^seed.w);
        z1 = taus(r1, S1, 429496729UL);
        z2 = taus(r1, S2, 4294967288UL);
        z3 = taus(r1, S3, 429496280UL);
        z4 = lcg(r1);

        HybridTaus rng;
        rng.state = (z1^z2^z3^z4) * UNIF01_INV32;
        return rng;
    }

    METAL_FUNC float rand() {
        uint seed = this->state * UNIF01_NORM32;
        uint z1 = taus(seed, S1, 429496729UL);
        uint z2 = taus(seed, S2, 4294967288UL);
        uint z3 = taus(seed, S3, 429496280UL);
        uint z4 = lcg(seed);

        thread float result = this->state;
        this->state = (z1^z2^z3^z4) * UNIF01_INV32;
        return result;
    }
};

template<typename T> METAL_FUNC void rand_uniform(
    constant size_t &size,
    constant float &min,
    constant float &max,
    device atomic_uint *seed,
    device T *out,
    uint tid [[thread_position_in_grid]]
) {
    if (tid >= size) {
        return;
    }

    // Evenly sized vectors need an offset when writing the mirror element.
    uint off = 1 - size % 2;
    float diff = abs(min - max);
    uint s = atomic_load_explicit(seed, memory_order_relaxed);
    HybridTaus rng = HybridTaus::init({ulong(s), tid, 1, 1});
    out[tid] = static_cast<T>(rng.rand() * diff + min);
    if (tid == 0) {
        atomic_store_explicit(seed, uint(rng.rand() * UNIF01_NORM32), memory_order_relaxed);
        // Return early if tid == 0 && off == 0, otherwise we will write to out[size].
        if (off == 0)
            return;
    }
    // Use symmetry to fill the other half of the array.
    out[size - off - tid] = static_cast<T>(rng.rand() * diff + min);
}

// Create Gaussian normal distribution using Box-Muller transform:
// https://en.wikipedia.org/wiki/Box–Muller_transform
template<typename T> METAL_FUNC void normal(
    constant size_t &size,
    constant float &mean,
    constant float &stddev,
    device atomic_uint *seed,
    device T *out,
    uint tid [[thread_position_in_grid]]
) {
    if (tid >= size) {
        return;
    }
    // Evenly sized vectors need an offset when writing the mirror element.
    uint off = 1 - size % 2;
    uint s = atomic_load_explicit(seed, memory_order_relaxed);
    HybridTaus rng = HybridTaus::init({ulong(s), tid, 1, 1});
    float u1 = rng.rand();
    float u2 = rng.rand();

    float cosval;
    float sinval = sincos(TWO_PI * u2, cosval);
    float mag = stddev * sqrt(-2.0 * log(u1));
    float z0  = mag * cosval + mean;
    float z1  = mag * sinval + mean;

    out[tid] = static_cast<T>(z0);

    if (tid == 0) {
        atomic_store_explicit(seed, uint(rng.rand() * UNIF01_NORM32), memory_order_relaxed);
        // Return early if tid == 0 && off == 0, otherwise we will write to out[size].
        if (off == 0)
            return;
    }
    // Use symmetry to fill the other half of the array.
    out[size - off - tid] = static_cast<T>(z1);
}

#define UNIFORM_OP(NAME, T)                             \
kernel void rand_uniform_##NAME(                        \
    constant size_t &size,                              \
    constant float &min,                                \
    constant float &max,                                \
    device atomic_uint *seed,                           \
    device T *out,                                      \
    uint tid [[thread_position_in_grid]]                \
) {                                                     \
    rand_uniform<T>(size, min, max, seed, out, tid);    \
}                                                       \

#define NORMAL_OP(NAME, T)                              \
kernel void rand_normal_##NAME(                         \
    constant size_t &size,                              \
    constant float &mean,                               \
    constant float &stddev,                             \
    device atomic_uint *seed,                           \
    device T *out,                                      \
    uint tid [[thread_position_in_grid]]                \
) {                                                     \
    normal<T>(size, mean, stddev, seed, out, tid);      \
}                                                       \


#define RANDOM_OPS(NAME, T) \
UNIFORM_OP(NAME, T)         \
NORMAL_OP(NAME, T)          \

RANDOM_OPS(f32, float)
RANDOM_OPS(f16, half)

#if __METAL_VERSION__ >= 310
RANDOM_OPS(bf16, bfloat)
#endif