1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{DType, Device, Result, Tensor};
use candle_nn::{linear, AdamW, Linear, Module, Optimizer, ParamsAdamW, VarBuilder, VarMap};
fn gen_data() -> Result<(Tensor, Tensor)> {
// Generate some sample linear data.
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
Ok((sample_xs, sample_ys))
}
fn main() -> Result<()> {
let (sample_xs, sample_ys) = gen_data()?;
// Use backprop to run a linear regression between samples and get the coefficients back.
let varmap = VarMap::new();
let vb = VarBuilder::from_varmap(&varmap, DType::F32, &Device::Cpu);
let model = linear(2, 1, vb.pp("linear"))?;
let params = ParamsAdamW {
lr: 0.1,
..Default::default()
};
let mut opt = AdamW::new(varmap.all_vars(), params)?;
for step in 0..10000 {
let ys = model.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
opt.backward_step(&loss)?;
println!("{step} {}", loss.to_vec0::<f32>()?);
}
Ok(())
}
|