summaryrefslogtreecommitdiff
path: root/candle-nn/src/ops.rs
blob: fdd671429836c527b827916e9c7163b45cea843f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use candle::{CpuStorage, Layout, Result, Shape, Tensor};
use rayon::prelude::*;

/// Applies the softmax function to the input tensor, rescaling the element so that elements on
/// a slice of fixed index on dimension `dim` are between 0 and 1 and sum to 1.
///
/// ```rust
/// use candle::{Tensor, Device, test_utils::to_vec2_round};
/// let a = Tensor::new(&[[0f32, 1., 0., 1.], [-2., 2., 3., -3.]], &Device::Cpu)?;
/// let a = candle_nn::ops::softmax(&a, 1)?;
/// assert_eq!(
///     to_vec2_round(&a, 4)?,
///     &[
///         [0.1345, 0.3655, 0.1345, 0.3655],
///         [0.0049, 0.2671, 0.7262, 0.0018]
///     ]);
/// # Ok::<(), candle::Error>(())
/// ```
pub fn softmax<D: candle::shape::Dim>(xs: &Tensor, dim: D) -> Result<Tensor> {
    let dim = dim.to_index(xs.shape(), "softmax")?;
    let max = xs.max_keepdim(dim)?;
    let diff = xs.broadcast_sub(&max)?;
    let num = diff.exp()?;
    let den = num.sum_keepdim(dim)?;
    num.broadcast_div(&den)
}

pub fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> Result<Tensor> {
    let d = d.to_index(xs.shape(), "log-softmax")?;
    let max = xs.max_keepdim(d)?;
    let diff = xs.broadcast_sub(&max)?;
    let sum_exp = diff.exp()?.sum_keepdim(d)?;
    let log_sm = diff.broadcast_sub(&sum_exp.log()?)?;
    Ok(log_sm)
}

pub fn silu(xs: &Tensor) -> Result<Tensor> {
    xs.silu()
}

pub fn swiglu(xs: &Tensor) -> Result<Tensor> {
    let xs = xs.chunk(2, candle::D::Minus1)?;
    &xs[0].silu()? * &xs[1]
}

pub fn sigmoid(xs: &Tensor) -> Result<Tensor> {
    // TODO: Should we have a specialized op for this?
    (xs.neg()?.exp()? + 1.0)?.recip()
}

pub fn hard_sigmoid(xs: &Tensor) -> Result<Tensor> {
    // TODO: Should we have a specialized op for this?
    ((xs + 3.0)? / 6.0)?.clamp(0f32, 1f32)
}

pub fn leaky_relu(xs: &Tensor, negative_slope: f64) -> Result<Tensor> {
    let zeros = xs.zeros_like()?;
    xs.maximum(&zeros)? + xs.minimum(&zeros)? * negative_slope
}

pub fn dropout(xs: &Tensor, drop_p: f32) -> Result<Tensor> {
    // This implementation is inefficient as it stores the full mask for the backward pass.
    // Instead we could just store the seed and have a specialized kernel that would both
    // generate the random mask and apply it.
    // Another easier optimization would be to be able to generate boolean mask using just a bit of
    // entropy per element rather than generating a full float per element.
    if !(0. ..1.).contains(&drop_p) {
        candle::bail!("dropout probability has to be in [0, 1), got {drop_p}")
    }
    let rand = Tensor::rand(0f32, 1f32, xs.shape(), xs.device())?;
    let scale = 1.0 / (1.0 - drop_p as f64);
    let drop_p = Tensor::new(drop_p, xs.device())?.broadcast_as(xs.shape())?;
    let mask = (rand.ge(&drop_p)? * scale)?.to_dtype(xs.dtype())?;
    xs * mask
}

#[derive(Debug)]
pub struct Dropout {
    drop_p: f32,
}

impl Dropout {
    pub fn new(drop_p: f32) -> Dropout {
        Self { drop_p }
    }

    pub fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
        if train {
            dropout(xs, self.drop_p)
        } else {
            Ok(xs.clone())
        }
    }
}

impl candle::ModuleT for Dropout {
    fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
        self.forward(xs, train)
    }
}

struct SoftmaxLastDim;

impl candle::CustomOp1 for SoftmaxLastDim {
    fn name(&self) -> &'static str {
        "softmax-last-dim"
    }

    fn cpu_fwd(&self, storage: &CpuStorage, layout: &Layout) -> Result<(CpuStorage, Shape)> {
        fn softmax<T: candle::WithDType + num_traits::Float>(
            src: &[T],
            layout: &Layout,
        ) -> Result<(CpuStorage, Shape)> {
            let src = match layout.contiguous_offsets() {
                None => candle::bail!("input has to be contiguous"),
                Some((o1, o2)) => &src[o1..o2],
            };
            let el_count = layout.shape().elem_count();
            let dims = layout.shape().dims();
            let dim_m1 = dims[dims.len() - 1];
            let mut dst = vec![T::zero(); el_count];
            src.par_chunks(dim_m1)
                .zip(dst.par_chunks_mut(dim_m1))
                .for_each(|(src, dst)| {
                    let mut max = T::neg_infinity();
                    unsafe { T::vec_reduce_max(src.as_ptr(), &mut max, dim_m1) };
                    for (s, d) in src.iter().zip(dst.iter_mut()) {
                        *d = (*s - max).exp();
                    }
                    let mut sum_exp = T::zero();
                    unsafe { T::vec_reduce_sum(dst.as_ptr(), &mut sum_exp, dim_m1) };
                    for d in dst.iter_mut() {
                        *d /= sum_exp
                    }
                });
            let storage = candle::WithDType::to_cpu_storage_owned(dst);
            Ok((storage, Shape::from_dims(dims)))
        }

        match storage {
            CpuStorage::BF16(slice) => softmax::<half::bf16>(slice, layout),
            CpuStorage::F16(slice) => softmax::<half::f16>(slice, layout),
            CpuStorage::F32(slice) => softmax::<f32>(slice, layout),
            CpuStorage::F64(slice) => softmax::<f64>(slice, layout),
            _ => candle::bail!("unsupported dtype for softmax {:?}", storage),
        }
    }

    #[cfg(feature = "cuda")]
    fn cuda_fwd(
        &self,
        storage: &candle::CudaStorage,
        layout: &Layout,
    ) -> Result<(candle::CudaStorage, Shape)> {
        use candle::cuda_backend::cudarc::driver::{
            CudaSlice, DeviceRepr, LaunchAsync, LaunchConfig,
        };
        use candle::cuda_backend::{kernel_name, kernels, Map1, WrapErr};
        use candle::{CudaDevice, WithDType};

        struct S;
        impl Map1 for S {
            fn f<T: DeviceRepr + WithDType>(
                &self,
                src: &CudaSlice<T>,
                dev: &CudaDevice,
                layout: &Layout,
            ) -> Result<CudaSlice<T>> {
                let src = match layout.contiguous_offsets() {
                    None => candle::bail!("input has to be contiguous"),
                    Some((o1, o2)) => src.slice(o1..o2),
                };
                let el = layout.shape().elem_count();
                let dims = layout.shape().dims();
                let dim_m1 = dims[dims.len() - 1];
                let (n_rows, n_cols) = (el / dim_m1, dim_m1);

                let cfg = LaunchConfig {
                    grid_dim: (n_rows as u32, 1, 1),
                    block_dim: (1, 32, 1),
                    shared_mem_bytes: 0,
                };
                let src = &src.slice(layout.start_offset()..);
                let func = dev.get_or_load_func(&kernel_name::<T>("softmax"), kernels::REDUCE)?;
                // SAFETY: Set later by running the kernel.
                let dst = unsafe { dev.alloc::<T>(el) }.w()?;
                let params = (src, &dst, n_cols as i32);
                // SAFETY: ffi.
                unsafe { func.launch(cfg, params) }.w()?;
                Ok(dst)
            }
        }

        use candle::backend::BackendStorage;
        let dev = storage.device();
        let slice = S.map(&storage.slice, dev, layout)?;
        let dst = candle::cuda_backend::CudaStorage {
            slice,
            device: dev.clone(),
        };
        Ok((dst, layout.shape().clone()))
    }

    #[cfg(feature = "metal")]
    fn metal_fwd(
        &self,
        storage: &candle::MetalStorage,
        layout: &Layout,
    ) -> Result<(candle::MetalStorage, Shape)> {
        use candle::{backend::BackendStorage, DType};
        let device = storage.device();
        let command_buffer = device.command_buffer()?;
        let kernels = device.kernels();
        let name = match storage.dtype() {
            DType::F32 => "softmax_f32",
            DType::F16 => "softmax_f16",
            DType::BF16 => "softmax_bf16",
            dtype => candle::bail!("softmax-last-dim is not implemented for {dtype:?}"),
        };

        let n = layout.stride().len();
        if !(layout.is_contiguous() && layout.stride()[n - 1] == 1) {
            candle::bail!("Non contiguous softmax-last-dim is not implemented");
        }

        let last_dim = layout.dims()[layout.shape().rank() - 1];
        let elem_count = layout.shape().elem_count();
        let output = device.new_buffer(elem_count, storage.dtype(), "softmax")?;
        candle_metal_kernels::call_last_softmax(
            device.metal_device(),
            &command_buffer,
            kernels,
            name,
            elem_count,
            last_dim,
            storage.buffer(),
            layout.start_offset() * storage.dtype().size_in_bytes(),
            &output,
        )
        .unwrap();
        let newstorage =
            candle::MetalStorage::new(output, device.clone(), elem_count, storage.dtype());
        Ok((newstorage, layout.shape().clone()))
    }
}

pub fn softmax_last_dim(xs: &Tensor) -> Result<Tensor> {
    xs.apply_op1_no_bwd(&SoftmaxLastDim)
}

// https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
pub fn pixel_shuffle(xs: &Tensor, upscale_factor: usize) -> Result<Tensor> {
    let (b_size, c, h, w) = xs.dims4()?;
    let out_c = c / upscale_factor / upscale_factor;
    xs.reshape((b_size, out_c, upscale_factor, upscale_factor, h, w))?
        .permute((0, 1, 4, 2, 5, 3))?
        .reshape((b_size, out_c, h * upscale_factor, w * upscale_factor))
}

pub fn pixel_unshuffle(xs: &Tensor, downscale_factor: usize) -> Result<Tensor> {
    let (b_size, c, h, w) = xs.dims4()?;
    let out_c = c * downscale_factor * downscale_factor;
    xs.reshape((
        b_size,
        c,
        h / downscale_factor,
        downscale_factor,
        w / downscale_factor,
        downscale_factor,
    ))?
    .permute((0, 1, 3, 5, 2, 4))?
    .reshape((b_size, out_c, h / downscale_factor, w / downscale_factor))
}

// https://pytorch.org/docs/stable/generated/torch.nn.ReplicationPad2d.html
pub fn replication_pad2d(xs: &Tensor, pad: usize) -> Result<Tensor> {
    match pad {
        0 => Ok(xs.clone()),
        1 => {
            let (_b_size, _c, h, w) = xs.dims4()?;
            let (first, last) = (xs.narrow(3, 0, 1)?, xs.narrow(3, w - 1, 1)?);
            let xs = Tensor::cat(&[&first, xs, &last], 3)?;
            let (first, last) = (xs.narrow(2, 0, 1)?, xs.narrow(2, h - 1, 1)?);
            Tensor::cat(&[&first, &xs, &last], 2)
        }
        n => candle::bail!("replication-pad with a size of {n} is not supported"),
    }
}