1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
use candle::{Result, Shape, Tensor};
use candle_nn::encoding::one_hot;
#[test]
fn test_i64_one_hot() -> Result<()> {
let device = candle::Device::Cpu;
let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?;
let depth = 4;
let on_value = 1.0;
let off_value = 0.0;
let one_hot = one_hot::<f32>(indices, depth, on_value, off_value)?;
let expected_matrix = [
[[1., 0., 0., 0.], [0., 0., 1., 0.]],
[[0., 1., 0., 0.], [0., 0., 0., 0.]],
];
assert_eq!(one_hot.shape(), &Shape::from((2, 2, depth)));
let matrix = one_hot.to_vec3::<f32>()?;
assert_eq!(matrix, expected_matrix);
Ok(())
}
#[test]
fn test_rank_3_one_hot() -> Result<()> {
let device = candle::Device::Cpu;
let indices = Tensor::new(
vec![
vec![vec![0i64, 1], vec![2, 3]],
vec![vec![3, 1], vec![1, -1]],
],
&device,
)?;
let depth = 4;
let on_value = 1.0;
let off_value = 0.0;
let one_hot = one_hot::<f32>(indices, depth, on_value, off_value)?;
let expected_matrix = Tensor::new(
vec![
vec![
vec![vec![1f32, 0., 0., 0.], vec![0., 1., 0., 0.]],
vec![vec![0., 0., 1., 0.], vec![0., 0., 0., 1.]],
],
vec![
vec![vec![0., 0., 0., 1.], vec![0., 1., 0., 0.]],
vec![vec![0., 1., 0., 0.], vec![0., 0., 0., 0.]],
],
],
&device,
)?;
assert_eq!(one_hot.shape(), expected_matrix.shape());
assert_eq!(one_hot.dims(), expected_matrix.dims());
let matrix = one_hot.get(1)?.to_vec3::<f32>()?;
let expected_matrix = expected_matrix.get(1)?.to_vec3::<f32>()?;
assert_eq!(matrix, expected_matrix);
Ok(())
}
#[test]
fn test_u8_one_cold() -> Result<()> {
let device = candle::Device::Cpu;
let depth = 4;
let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?;
let on_value = 0u8;
let off_value = 1;
// Note that the method does not require the turbofish operator, as the type is inferred from the on_value.
let one_cold = one_hot(indices, depth, on_value, off_value)?;
let expected_matrix = [[[0, 1, 1, 1], [1, 1, 0, 1]], [[1, 0, 1, 1], [1, 1, 1, 1]]];
assert_eq!(one_cold.shape(), &Shape::from((2, 2, depth)));
let matrix = one_cold.to_vec3::<u8>()?;
assert_eq!(matrix, expected_matrix);
Ok(())
}
#[test]
fn test_iter() -> Result<()> {
let device = candle::Device::Cpu;
let depth = 4;
let indices = Tensor::new(vec![vec![0i64, 2], vec![1, -1]], &device)?;
let matrix = indices.to_vec2::<i64>()?;
let (dim1, dim2) = indices.dims2()?;
let iter = (0..dim1).flat_map(|i| (0..dim2).map(move |j| (i, j)));
let mut v = vec![0; depth * dim1 * dim2];
for (i, j) in iter {
let idx = i * depth * dim2 + j * depth;
v[idx] = matrix[i][j];
}
for (i, row) in matrix.iter().enumerate() {
for (j, &value) in row.iter().enumerate() {
let idx = i * depth * dim2 + j * depth;
assert_eq!(v[idx], value);
}
}
Ok(())
}
|