1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{test_device, test_utils::to_vec3_round, Device, Result, Tensor};
fn softmax(device: &Device) -> Result<()> {
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
let t0 = candle_nn::ops::softmax(&tensor.log()?, 0)?;
let t1 = candle_nn::ops::softmax(&tensor.log()?, 1)?;
let t2 = candle_nn::ops::softmax(&tensor.log()?, 2)?;
assert_eq!(
to_vec3_round(&t0, 4)?,
&[
// 3/5, 1/2, 4/11
[[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]],
// 2/5, 1/2, 7/11
[[0.4, 0.5, 0.6364], [0.8889, 0.2857, 0.4706]]
]
);
assert_eq!(
to_vec3_round(&t1, 4)?,
&[
// 3/4, 1/6, 4/13
[[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]],
// 2/10, 1/3, 7/15
[[0.2, 0.3333, 0.4667], [0.8, 0.6667, 0.5333]]
]
);
assert_eq!(
to_vec3_round(&t2, 4)?,
&[
// (3, 1, 4) / 8, (1, 5, 9) / 15
[[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]],
// (2, 1, 7) / 10, (8, 2, 8) / 18
[[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]]
]
);
let t2 = candle_nn::ops::softmax_last_dim(&tensor.log()?)?;
assert_eq!(
to_vec3_round(&t2, 4)?,
&[
// (3, 1, 4) / 8, (1, 5, 9) / 15
[[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]],
// (2, 1, 7) / 10, (8, 2, 8) / 18
[[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]]
]
);
Ok(())
}
fn rms_norm(device: &Device) -> Result<()> {
let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]];
let tensor = Tensor::new(data, device)?;
let alpha = Tensor::new(&[1f32, 2f32, 3f32], device)?;
let t = candle_nn::ops::rms_norm(&tensor, &alpha, 1e-5)?;
assert_eq!(
to_vec3_round(&t, 4)?,
&[
[[1.019, 0.6794, 4.0762], [0.1674, 1.6744, 4.521]],
[[0.4714, 0.4714, 4.9497], [1.206, 0.603, 3.6181]]
]
);
let t2 = candle_nn::ops::rms_norm_slow(&tensor, &alpha, 1e-5)?;
assert_eq!(
to_vec3_round(&t2, 4)?,
&[
[[1.019, 0.6794, 4.0762], [0.1674, 1.6744, 4.521]],
[[0.4714, 0.4714, 4.9497], [1.206, 0.603, 3.6181]]
]
);
let diff = (t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert!(diff < 1e-5);
Ok(())
}
#[test]
fn softmax_numerical_stability() -> Result<()> {
let dev = &Device::Cpu;
let xs = Tensor::new(&[1234f32, 0.], dev)?;
let softmax = candle_nn::ops::softmax(&xs, 0)?;
assert_eq!(softmax.to_vec1::<f32>()?, &[1f32, 0.]);
Ok(())
}
fn rope(device: &Device) -> Result<()> {
use rand::{rngs::StdRng, Rng, SeedableRng};
let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16);
let el_count = b_size * num_head * seq_len * head_dim;
let mut rng = StdRng::seed_from_u64(299792458);
let src: Vec<f32> = (0..el_count).map(|_| rng.gen::<f32>()).collect();
let cos: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>())
.collect();
let sin: Vec<f32> = (0..seq_len * head_dim / 2)
.map(|_| rng.gen::<f32>())
.collect();
let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?;
let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?;
let sin = Tensor::from_vec(sin, (seq_len, head_dim / 2), device)?;
let rope1 = candle_nn::rotary_emb::rope_i(&src, &cos, &sin)?;
let rope2 = candle_nn::rotary_emb::rope_i_slow(&src, &cos, &sin)?;
let sum_diff = (rope1 - rope2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
if device.is_cpu() {
assert_eq!(sum_diff, 0.);
} else if device.is_cuda() {
assert!(sum_diff < 1e-4);
}
Ok(())
}
test_device!(rope, rope_cpu, rope_gpu, rope_metal);
test_device!(softmax, softmax_cpu, softmax_gpu, softmax_metal);
test_device!(rms_norm, rms_norm_cpu, rms_norm_gpu, rms_norm_metal);
|