1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
mod test_utils;
use test_utils::{to_vec0_round, to_vec2_round};
use anyhow::Result;
use candle::{Device, Tensor, Var};
use candle_nn::{AdamW, Linear, ParamsAdamW, SGD};
#[test]
fn sgd_optim() -> Result<()> {
let x = Var::new(0f32, &Device::Cpu)?;
let sgd = SGD::new(vec![x.clone()], 0.1);
let xt = x.as_tensor();
for _step in 0..100 {
let loss = ((xt - 4.2)? * (xt - 4.2)?)?;
sgd.backward_step(&loss)?
}
assert_eq!(x.to_scalar::<f32>()?, 4.199999);
Ok(())
}
/* The results of this test have been checked against the following PyTorch code.
import torch
from torch import optim
w_gen = torch.tensor([[3., 1.]])
b_gen = torch.tensor([-2.])
sample_xs = torch.tensor([[2., 1.], [7., 4.], [-4., 12.], [5., 8.]])
sample_ys = sample_xs.matmul(w_gen.t()) + b_gen
m = torch.nn.Linear(2, 1)
with torch.no_grad():
m.weight.zero_()
m.bias.zero_()
optimizer = optim.SGD(m.parameters(), lr=0.004, momentum=0.)
for _step in range(1000):
optimizer.zero_grad()
ys = m(sample_xs)
loss = ((ys - sample_ys)**2).sum()
loss.backward()
optimizer.step()
print(m.weight)
print(m.bias)
*/
#[test]
fn sgd_linear_regression() -> Result<()> {
// Generate some linear data, y = 3.x1 + x2 - 2.
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let sgd = SGD::new(vec![w.clone(), b.clone()], 0.004);
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
for _step in 0..1000 {
let ys = lin.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
sgd.backward_step(&loss)?;
}
assert_eq!(w.to_vec2::<f32>()?, &[[2.9983196, 0.99790204]]);
assert_eq!(b.to_scalar::<f32>()?, -1.9796902);
Ok(())
}
/* The following test returns the same values as the PyTorch code below.
import torch
from torch import optim
w_gen = torch.tensor([[3., 1.]])
b_gen = torch.tensor([-2.])
sample_xs = torch.tensor([[2., 1.], [7., 4.], [-4., 12.], [5., 8.]])
sample_ys = sample_xs.matmul(w_gen.t()) + b_gen
m = torch.nn.Linear(2, 1)
with torch.no_grad():
m.weight.zero_()
m.bias.zero_()
optimizer = optim.AdamW(m.parameters(), lr=0.1)
for _step in range(100):
optimizer.zero_grad()
ys = m(sample_xs)
loss = ((ys - sample_ys)**2).sum()
loss.backward()
optimizer.step()
print(m.weight)
print(m.bias)
*/
#[test]
fn adamw_linear_regression() -> Result<()> {
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let params = ParamsAdamW {
lr: 0.1,
..Default::default()
};
let mut opt = AdamW::new(vec![w.clone(), b.clone()], params)?;
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
for _step in 0..100 {
let ys = lin.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
opt.backward_step(&loss)?;
}
assert_eq!(to_vec2_round(w.as_tensor(), 4)?, &[[2.7257, 0.7097]]);
assert_eq!(to_vec0_round(b.as_tensor(), 4)?, 0.7873);
Ok(())
}
|