1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
|
use crate::onnx;
use crate::onnx::attribute_proto::AttributeType;
use crate::onnx::tensor_proto::DataType;
use candle::{bail, DType, Device, Result, Tensor};
use std::collections::HashMap;
pub type Value = Tensor;
pub fn dtype(dt: DataType) -> Option<DType> {
match dt {
DataType::Uint8 => Some(DType::U8),
DataType::Uint32 => Some(DType::U32),
DataType::Int64 => Some(DType::I64),
DataType::Float16 => Some(DType::F16),
DataType::Float => Some(DType::F32),
DataType::Double => Some(DType::F64),
_ => None,
}
}
trait Attr {
const TYPE: AttributeType;
fn get(attr: &onnx::AttributeProto) -> Result<&Self>;
}
impl Attr for i64 {
const TYPE: AttributeType = AttributeType::Int;
fn get(attr: &onnx::AttributeProto) -> Result<&Self> {
Ok(&attr.i)
}
}
impl Attr for f32 {
const TYPE: AttributeType = AttributeType::Float;
fn get(attr: &onnx::AttributeProto) -> Result<&Self> {
Ok(&attr.f)
}
}
impl Attr for [i64] {
const TYPE: AttributeType = AttributeType::Ints;
fn get(attr: &onnx::AttributeProto) -> Result<&Self> {
Ok(attr.ints.as_slice())
}
}
impl Attr for str {
const TYPE: AttributeType = AttributeType::String;
fn get(attr: &onnx::AttributeProto) -> Result<&Self> {
std::str::from_utf8(&attr.s).map_err(candle::Error::wrap)
}
}
fn get_attr_<'a>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a onnx::AttributeProto> {
match node.attribute.iter().find(|attr| attr.name == name) {
None => {
bail!(
"cannot find the '{name}' attribute in '{}' for {}",
node.op_type,
node.name
)
}
Some(dt) => Ok(dt),
}
}
fn get_attr<'a, T: Attr + ?Sized>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a T> {
let attr = get_attr_(node, name)?;
if attr.r#type() != T::TYPE {
bail!(
"unsupported type {:?} for '{name}' attribute in '{}' for {}",
attr.r#type,
node.op_type,
node.name
)
}
T::get(attr)
}
fn get_attr_opt<'a, T: Attr + ?Sized>(
node: &'a onnx::NodeProto,
name: &str,
) -> Result<Option<&'a T>> {
match node.attribute.iter().find(|attr| attr.name == name) {
None => Ok(None),
Some(attr) => {
if attr.r#type() != T::TYPE {
bail!(
"unsupported type {:?} for '{name}' attribute in '{}' for {}",
attr.r#type,
node.op_type,
node.name
)
}
let val = T::get(attr)?;
Ok(Some(val))
}
}
}
pub fn get_tensor(t: &onnx::TensorProto, name: &str) -> Result<Tensor> {
let dims: Vec<usize> = t.dims.iter().map(|&x| x as usize).collect();
match DataType::try_from(t.data_type) {
Ok(DataType::Int32) => {
if t.int32_data.is_empty() {
let len = t.raw_data.len() / 4;
let data: &[i32] =
unsafe { std::slice::from_raw_parts(t.raw_data.as_ptr() as *const i32, len) };
let data = data.iter().map(|v| *v as i64).collect::<Vec<_>>();
Tensor::from_vec(data, len, &Device::Cpu)
} else {
let data = t.int32_data.iter().map(|v| *v as i64).collect::<Vec<_>>();
Tensor::from_vec(data, t.int32_data.len(), &Device::Cpu)
}
}
Ok(dt) => match dtype(dt) {
Some(dt) => {
if dt == DType::F32 && !t.float_data.is_empty() {
Tensor::from_slice(&t.float_data, dims.as_slice(), &Device::Cpu)
} else if dt == DType::F64 && !t.double_data.is_empty() {
Tensor::from_slice(&t.double_data, dims.as_slice(), &Device::Cpu)
} else if dt == DType::I64 && !t.int64_data.is_empty() {
Tensor::from_slice(&t.int64_data, dims.as_slice(), &Device::Cpu)
} else {
Tensor::from_raw_buffer(
t.raw_data.as_slice(),
dt,
dims.as_slice(),
&Device::Cpu,
)
}
}
None => {
bail!("unsupported 'value' data-type {dt:?} for {name}")
}
},
Err(_) => {
bail!("unsupported 'value' data-type {} for {name}", t.data_type,)
}
}
}
// This function provides a direct evaluation of the proto.
// Longer-term, we should first convert the proto to an intermediate representation of the compute
// graph so as to make multiple evaluations more efficient.
// An example upside of this would be to remove intermediary values when they are not needed
// anymore.
pub fn simple_eval(
model: &onnx::ModelProto,
inputs: HashMap<String, Value>,
) -> Result<HashMap<String, Value>> {
let graph = match &model.graph {
None => bail!("no graph defined in proto"),
Some(graph) => graph,
};
let mut values = inputs;
for t in graph.initializer.iter() {
let tensor = get_tensor(t, t.name.as_str())?;
values.insert(t.name.to_string(), tensor);
}
for input in graph.input.iter() {
let input_type = match &input.r#type {
Some(input_type) => input_type,
None => continue,
};
let input_type = match &input_type.value {
Some(input_type) => input_type,
None => continue,
};
let tensor_type = match input_type {
onnx::type_proto::Value::TensorType(tt) => tt,
_ => continue,
};
let tensor = match values.get(&input.name) {
None => bail!("missing input {}", input.name),
Some(tensor) => tensor,
};
let dt = match DataType::try_from(tensor_type.elem_type) {
Ok(dt) => match dtype(dt) {
Some(dt) => dt,
None => {
bail!("unsupported 'value' data-type {dt:?} for {}", input.name)
}
},
type_ => bail!("unsupported input type {type_:?}"),
};
match &tensor_type.shape {
None => continue,
Some(shape) => {
if shape.dim.len() != tensor.rank() {
bail!(
"unexpected rank for {}, got {:?}, expected {:?}",
input.name,
shape.dim,
tensor.shape()
)
}
for (idx, (d, &dim)) in shape.dim.iter().zip(tensor.dims().iter()).enumerate() {
match &d.value {
Some(onnx::tensor_shape_proto::dimension::Value::DimValue(v)) => {
if *v as usize != dim {
bail!(
"unexpected dim {idx} for {}, got {:?}, expected {:?}",
input.name,
shape.dim,
tensor.shape()
)
}
}
// We do not check equality constraints for the DimParam dimensions for now.
Some(onnx::tensor_shape_proto::dimension::Value::DimParam(_)) | None => (),
}
}
}
};
if dt != tensor.dtype() {
bail!(
"unexpected dtype for {}, got {:?}, expected {dt:?}",
input.name,
tensor.dtype()
)
}
}
// The nodes are topologically sorted so we can just process them in order.
for node in graph.node.iter() {
let get = |input_name: &str| match values.get(input_name) {
Some(value) => Ok(value),
None => bail!("cannot find {input_name} for op {}", node.name),
};
// TODO: Validate node.input for each operator.
match node.op_type.as_str() {
"Add" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_add(input1)?;
values.insert(node.output[0].clone(), output);
}
"Sub" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_sub(input1)?;
values.insert(node.output[0].clone(), output);
}
"Mul" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_mul(input1)?;
values.insert(node.output[0].clone(), output);
}
"Div" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_div(input1)?;
values.insert(node.output[0].clone(), output);
}
"Pow" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_pow(input1)?;
values.insert(node.output[0].clone(), output);
}
"Equal" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_eq(input1)?;
values.insert(node.output[0].clone(), output);
}
"Not" => {
let xs = get(&node.input[0])?;
let xs = xs.eq(&xs.zeros_like()?)?;
values.insert(node.output[0].clone(), xs);
}
"MatMul" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?;
let output = input0.broadcast_matmul(input1)?;
values.insert(node.output[0].clone(), output);
}
"Reshape" => {
let input0 = get(&node.input[0])?;
let input1 = get(&node.input[1])?.to_vec1::<i64>()?;
// TODO: Check that there is at most a single -1 or 0, handle other neg values.
let mut other_than_minus1 = 1usize;
for &v in input1.iter() {
if v != -1 && v != 0 {
other_than_minus1 *= v as usize
}
}
let input1 = input1
.iter()
.enumerate()
.map(|(idx, &v)| match v {
-1 => Ok(input0.elem_count() / other_than_minus1),
0 => input0.dim(idx),
_ => Ok(v as usize),
})
.collect::<Result<Vec<usize>>>()?;
let output = input0.reshape(input1)?;
values.insert(node.output[0].clone(), output);
}
"LogSoftmax" => {
let input = get(&node.input[0])?;
let output = match get_attr_opt::<i64>(node, "axis")? {
None => candle_nn::ops::softmax_last_dim(input)?,
Some(&axis) => {
let axis = input.normalize_axis(axis)?;
candle_nn::ops::log_softmax(input, axis)?
}
};
values.insert(node.output[0].clone(), output);
}
"Softmax" => {
let input = get(&node.input[0])?;
let output = match get_attr_opt::<i64>(node, "axis")? {
None => candle_nn::ops::softmax_last_dim(input)?,
Some(&axis) => {
let axis = input.normalize_axis(axis)?;
candle_nn::ops::softmax(input, axis)?
}
};
values.insert(node.output[0].clone(), output);
}
"Transpose" => {
let input = get(&node.input[0])?;
let output = match get_attr_opt::<[i64]>(node, "perm")? {
None => input.t()?,
Some(perm) => {
let perm = perm.iter().map(|&v| v as usize).collect::<Vec<_>>();
input.permute(perm)?
}
};
values.insert(node.output[0].clone(), output);
}
"Dropout" => {
let input = get(&node.input[0])?;
// Do not apply dropout at the moment, consider that we're only doing inference.
values.insert(node.output[0].clone(), input.clone());
}
"MaxPool" => {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#MaxPool
let dilations = get_attr_opt::<[i64]>(node, "dilations")?;
let kernel_shape = get_attr::<[i64]>(node, "kernel_shape")?;
let pads = get_attr_opt::<[i64]>(node, "pads")?;
let strides = get_attr_opt::<[i64]>(node, "strides")?;
let auto_pad = get_attr_opt::<str>(node, "auto_pad")?;
match auto_pad {
None | Some("NOTSET") => (),
Some(s) => bail!("unsupported auto_pad {s}"),
};
if let Some(d) = dilations {
if d.iter().any(|&v| v != 1) {
bail!("MaxPool with dilation != 1, {dilations:?}")
}
}
if let Some(d) = pads {
if d.iter().any(|&v| v != 0) {
bail!("MaxPool with pads != 0, {pads:?}")
}
}
let xs = get(&node.input[0])?;
let (k1, k2) = match kernel_shape {
[k1, k2] => (*k1 as usize, *k2 as usize),
_ => bail!("only 2d MaxPool is supported, kernel shape {kernel_shape:?}"),
};
let ys = match strides {
None => xs.max_pool2d((k1, k2))?,
Some([s1, s2]) => {
xs.max_pool2d_with_stride((k1, k2), (*s1 as usize, *s2 as usize))?
}
Some(strides) => bail!("only 2d MaxPool is supported, strides {strides:?}"),
};
values.insert(node.output[0].clone(), ys);
}
"AveragePool" => {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#AveragePool
let dilations = get_attr_opt::<[i64]>(node, "dilations")?;
let kernel_shape = get_attr::<[i64]>(node, "kernel_shape")?;
let pads = get_attr_opt::<[i64]>(node, "pads")?;
let strides = get_attr_opt::<[i64]>(node, "strides")?;
let auto_pad = get_attr_opt::<str>(node, "auto_pad")?;
match auto_pad {
None | Some("NOTSET") => (),
Some(s) => bail!("unsupported auto_pad {s}"),
};
if let Some(d) = dilations {
if d.iter().any(|&v| v != 1) {
bail!("AvgPool with dilation != 1, {dilations:?}")
}
}
if let Some(d) = pads {
if d.iter().any(|&v| v != 0) {
bail!("AvgPool with pads != 0, {pads:?}")
}
}
let xs = get(&node.input[0])?;
let (k1, k2) = match kernel_shape {
[k1, k2] => (*k1 as usize, *k2 as usize),
_ => bail!("only 2d AvgPool is supported, kernel shape {kernel_shape:?}"),
};
let ys = match strides {
None => xs.avg_pool2d((k1, k2))?,
Some([s1, s2]) => {
xs.avg_pool2d_with_stride((k1, k2), (*s1 as usize, *s2 as usize))?
}
Some(strides) => bail!("only 2d AvgPool is supported, strides {strides:?}"),
};
values.insert(node.output[0].clone(), ys);
}
"BatchNormalization" => {
let training_mode = get_attr_opt::<i64>(node, "training_mode")?;
if training_mode.copied().unwrap_or(0) != 0 {
bail!("training mode is not supported for BatchNorm")
}
let eps = get_attr_opt::<f32>(node, "epsilon")?
.copied()
.unwrap_or(1e-5);
let xs = get(&node.input[0])?;
let weight = get(&node.input[1])?;
let bias = get(&node.input[2])?;
let running_mean = get(&node.input[3])?;
let running_var = get(&node.input[4])?;
let target_shape: Vec<usize> = xs
.dims()
.iter()
.enumerate()
.map(|(idx, v)| if idx == 1 { *v } else { 1 })
.collect();
let target_shape = target_shape.as_slice();
let xs = xs
.broadcast_sub(&running_mean.reshape(target_shape)?)?
.broadcast_div(&(running_var.reshape(target_shape)? + eps as f64)?.sqrt()?)?;
let weight = weight.reshape(target_shape)?;
let bias = bias.reshape(target_shape)?;
let xs = xs.broadcast_mul(&weight)?.broadcast_add(&bias)?;
values.insert(node.output[0].clone(), xs);
}
"Squeeze" => {
let xs = get(&node.input[0])?;
let mut axes = if node.input.len() <= 1 {
// contract all the dimensions with size 1 except the batch dim.
xs.dims()
.iter()
.enumerate()
.flat_map(|(idx, &s)| if s == 1 && idx > 0 { Some(idx) } else { None })
.collect()
} else {
get(&node.input[1])?
.to_vec1::<i64>()?
.iter()
.map(|&i| xs.normalize_axis(i))
.collect::<Result<Vec<_>>>()?
};
axes.sort();
let mut xs = xs.clone();
for &axis in axes.iter().rev() {
xs = xs.squeeze(axis)?
}
values.insert(node.output[0].clone(), xs);
}
"ConstantOfShape" => {
let dims = get(&node.input[0])?;
let shape = dims
.to_vec1::<i64>()?
.into_iter()
.map(|v| v as usize)
.collect::<Vec<_>>();
let xs = Tensor::zeros(shape, DType::F32, dims.device())?;
values.insert(node.output[0].clone(), xs);
}
"Unsqueeze" => {
let xs = get(&node.input[0])?;
let axes = match get_attr_opt::<[i64]>(node, "axes")? {
Some(axis) => axis.to_vec(),
None => get(&node.input[1])?.to_vec1::<i64>()?,
};
let mut axes = axes
.iter()
.map(|&i| {
if i == xs.rank() as i64 {
Ok(xs.rank())
} else {
xs.normalize_axis(i)
}
})
.collect::<Result<Vec<_>>>()?;
axes.sort();
let mut xs = xs.clone();
for &axis in axes.iter().rev() {
xs = xs.unsqueeze(axis)?
}
values.insert(node.output[0].clone(), xs);
}
"Clip" => {
let xs = get(&node.input[0])?;
let xs = if node.input.len() >= 2 {
let mins = get(&node.input[1])?;
xs.broadcast_maximum(mins)?
} else {
xs.clone()
};
let xs = if node.input.len() >= 3 {
let maxs = get(&node.input[2])?;
xs.broadcast_minimum(maxs)?
} else {
xs.clone()
};
values.insert(node.output[0].clone(), xs);
}
"Gather" => {
let xs = get(&node.input[0])?;
let indices = get(&node.input[1])?;
let axis = get_attr_opt::<i64>(node, "axis")?.copied().unwrap_or(0);
let axis = xs.normalize_axis(axis)?;
// TODO: Provide an op to handle the ONNX generalized gather op ideally in a
// differentiable way.
let xs = if indices.rank() == 0 {
let index = indices.to_vec0::<i64>()? as usize;
xs.narrow(axis, index, 1)?.squeeze(axis)?
} else {
todo!("implement gather for {xs:?} {indices:?} axis {axis}")
};
values.insert(node.output[0].clone(), xs);
}
"Shape" => {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Shape
let xs = get(&node.input[0])?;
let start = get_attr_opt::<i64>(node, "start")?.copied().unwrap_or(0);
let end = get_attr_opt::<i64>(node, "end")?.copied().unwrap_or(-1);
let start = xs.normalize_axis(start)?;
let end = xs.normalize_axis(end)?;
let mut dims = vec![];
for idx in start..=end {
dims.push(xs.dim(idx)? as i64)
}
let dims = Tensor::from_vec(dims, xs.rank(), xs.device())?;
values.insert(node.output[0].clone(), dims);
}
"Conv" => {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv
let dilations = get_attr_opt::<[i64]>(node, "dilations")?;
let groups = get_attr_opt::<i64>(node, "group")?.copied().unwrap_or(1);
let _kernel_shape = get_attr_opt::<[i64]>(node, "kernel_shape")?;
let pads = get_attr_opt::<[i64]>(node, "pads")?;
let strides = get_attr_opt::<[i64]>(node, "strides")?;
let auto_pad = get_attr_opt::<str>(node, "auto_pad")?;
match auto_pad {
None | Some("NOTSET") => (),
Some(s) => bail!("unsupported auto_pad {s}"),
};
let xs = get(&node.input[0])?;
let ws = get(&node.input[1])?;
let ys = match ws.rank() {
3 => {
let (pads, xs) = match pads {
None => (0, xs.clone()),
Some([p]) => (*p as usize, xs.clone()),
Some([p1, p2]) => {
if p1 != p2 {
(0usize, xs.pad_with_zeros(2, *p1 as usize, *p2 as usize)?)
} else {
(*p1 as usize, xs.clone())
}
}
Some(pads) => {
bail!("more pads than expected in conv1d {pads:?} {}", node.name)
}
};
let strides = match strides {
None => 1,
Some([p]) => *p as usize,
Some(s) => {
bail!("more strides than expected in conv1d {s:?} {}", node.name)
}
};
let dilations = match dilations {
None => 1,
Some([p]) => *p as usize,
Some(s) => {
bail!("more dilations than expected in conv1d {s:?} {}", node.name)
}
};
xs.conv1d(ws, pads, strides, dilations, groups as usize)?
}
4 => {
let (pads, xs) = match pads {
None => (0, xs.clone()),
Some([p]) => (*p as usize, xs.clone()),
Some(&[p1, p2, p3, p4]) => {
let p1 = p1 as usize;
let p2 = p2 as usize;
let p3 = p3 as usize;
let p4 = p4 as usize;
if p1 != p2 || p1 != p3 || p1 != p4 {
(0, xs.pad_with_zeros(2, p1, p3)?.pad_with_zeros(3, p2, p4)?)
} else {
(p1, xs.clone())
}
}
Some(pads) => {
bail!("more pads than expected in conv2d {pads:?} {}", node.name)
}
};
let strides = match strides {
None => 1,
Some([p]) => *p as usize,
Some([p1, p2]) => {
if p1 != p2 {
bail!(
"strides have to be the same on both axis {pads:?} {}",
node.name
)
}
*p1 as usize
}
Some(s) => {
bail!("more strides than expected in conv2d {s:?} {}", node.name)
}
};
let dilations = match dilations {
None => 1,
Some([p]) => *p as usize,
Some([p1, p2]) => {
if p1 != p2 {
bail!(
"dilations have to be the same on both axis {pads:?} {}",
node.name
)
}
*p1 as usize
}
Some(s) => {
bail!("more dilations than expected in conv2d {s:?} {}", node.name)
}
};
xs.conv2d(ws, pads, strides, dilations, groups as usize)?
}
rank => bail!(
"unsupported rank for weight matrix {rank} in conv {}",
node.name
),
};
let ys = if node.input.len() > 2 {
let bs = get(&node.input[2])?;
let mut bs_shape = vec![1; ys.rank()];
bs_shape[1] = bs.elem_count();
ys.broadcast_add(&bs.reshape(bs_shape)?)?
} else {
ys
};
values.insert(node.output[0].clone(), ys);
}
"Concat" => {
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Concat
let inputs = node
.input
.iter()
.map(|n| Ok(get(n.as_str())?.clone()))
.collect::<Result<Vec<Value>>>()?;
let axis: i64 = *get_attr(node, "axis")?;
if inputs.is_empty() {
bail!("empty concat")
};
let axis = inputs[0].normalize_axis(axis)?;
let output = Tensor::cat(&inputs, axis)?;
values.insert(node.output[0].clone(), output);
}
"Abs" => {
let input = get(&node.input[0])?;
let output = input.abs()?;
values.insert(node.output[0].clone(), output);
}
"Cos" => {
let input = get(&node.input[0])?;
let output = input.cos()?;
values.insert(node.output[0].clone(), output);
}
"Sin" => {
let input = get(&node.input[0])?;
let output = input.sin()?;
values.insert(node.output[0].clone(), output);
}
"Neg" => {
let input = get(&node.input[0])?;
let output = input.neg()?;
values.insert(node.output[0].clone(), output);
}
"Erf" => {
let input = get(&node.input[0])?;
let output = input.erf()?;
values.insert(node.output[0].clone(), output);
}
"Tanh" => {
let input = get(&node.input[0])?;
let output = input.tanh()?;
values.insert(node.output[0].clone(), output);
}
"Sigmoid" => {
let input = get(&node.input[0])?;
let output = candle_nn::ops::sigmoid(input)?;
values.insert(node.output[0].clone(), output);
}
"Gelu" => {
let input = get(&node.input[0])?;
let output = input.gelu_erf()?;
values.insert(node.output[0].clone(), output);
}
"Relu" => {
let input = get(&node.input[0])?;
let output = input.relu()?;
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Constant
"Constant" => {
let value = match node.attribute.iter().find(|attr| attr.name == "value") {
None => {
// TODO: support sparse_value etc.
bail!("cannot find 'value' attr in 'Constant' for {}", node.name)
}
Some(value) => value,
};
let output = match value.r#type() {
AttributeType::Tensor => {
let t = value.t.as_ref().unwrap();
get_tensor(t, &node.name)?
}
rtype => bail!("unsupported 'value' type {rtype:?} for {}", node.name),
};
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#Cast
"Cast" => {
let input = get(&node.input[0])?;
let dt: i64 = *get_attr(node, "to")?;
let dtype = match DataType::try_from(dt as i32) {
Ok(DataType::Int32) => DType::I64,
Ok(dt) => match dtype(dt) {
Some(dt) => dt,
None => {
bail!("unsupported 'to' value {dt:?} for cast {}", node.name)
}
},
Err(_) => {
bail!("unsupported 'to' value {dt:?} for cast {}", node.name)
}
};
let output = input.to_dtype(dtype)?;
values.insert(node.output[0].clone(), output);
}
// https://github.com/onnx/onnx/blob/main/docs/Operators.md#CumSum
"CumSum" => {
let exclusive = get_attr_opt::<i64>(node, "exclusive")?
.copied()
.unwrap_or(0);
let reverse = get_attr_opt::<i64>(node, "reverse")?.copied().unwrap_or(0);
if exclusive != 0 {
bail!("only exclusive == 0 is supported in CumSum")
}
if reverse != 0 {
bail!("only reverse == 0 is supported in CumSum")
}
let input = get(&node.input[0])?;
let axis = get(&node.input[1])?
.to_dtype(DType::U32)?
.to_vec0::<u32>()?;
let output = input.cumsum(axis as usize)?;
values.insert(node.output[0].clone(), output);
}
op_type => bail!("unsupported op_type {op_type} for op {node:?}"),
}
}
graph
.output
.iter()
.map(|output| match values.remove(&output.name) {
None => bail!("cannot find output {}", output.name),
Some(value) => Ok((output.name.clone(), value)),
})
.collect()
}
|