1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
# Generated content DO NOT EDIT
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence
from os import PathLike
from candle.typing import _ArrayLike, Device, Scalar, Index
class bf16(DType):
pass
@staticmethod
def cat(tensors: List[Tensor], dim: int) -> Tensor:
"""
Concatenate the tensors across one axis.
"""
pass
class f16(DType):
pass
class f32(DType):
pass
class f64(DType):
pass
class i64(DType):
pass
@staticmethod
def ones(shape: Sequence[int], dtype: Optional[DType] = None, device: Optional[Device] = None) -> Tensor:
"""
Creates a new tensor filled with ones.
"""
pass
@staticmethod
def rand(shape: Sequence[int], device: Optional[Device] = None) -> Tensor:
"""
Creates a new tensor with random values.
"""
pass
@staticmethod
def randn(shape: Sequence[int], device: Optional[Device] = None) -> Tensor:
"""
Creates a new tensor with random values from a normal distribution.
"""
pass
@staticmethod
def stack(tensors: List[Tensor], dim: int) -> Tensor:
"""
Stack the tensors along a new axis.
"""
pass
@staticmethod
def tensor(data: _ArrayLike) -> Tensor:
"""
Creates a new tensor from a Python value. The value can be a scalar or array-like object.
"""
pass
class u32(DType):
pass
class u8(DType):
pass
@staticmethod
def zeros(shape: Sequence[int], dtype: Optional[DType] = None, device: Optional[Device] = None) -> Tensor:
"""
Creates a new tensor filled with zeros.
"""
pass
class DType:
"""
A `candle` dtype.
"""
class QTensor:
"""
A quantized tensor.
"""
def dequantize(self) -> Tensor:
"""
Dequantizes the tensor.
"""
pass
@property
def ggml_dtype(self) -> str:
"""
Gets the tensors quantized dtype.
"""
pass
def matmul_t(self, lhs: Tensor) -> Tensor:
"""
Performs a quantized matrix multiplication, with the quantized tensor as the right hand side.
"""
pass
@property
def rank(self) -> int:
"""
Gets the rank of the tensor.
"""
pass
@property
def shape(self) -> Tuple[int]:
"""
Gets the shape of the tensor.
"""
pass
class Tensor:
"""
A `candle` tensor.
"""
def __init__(self, data: _ArrayLike):
pass
def __add__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
"""
Add a scalar to a tensor or two tensors together.
"""
pass
def __getitem__(self, index: Union[Index, Tensor, Sequence[Index]]) -> "Tensor":
"""
Return a slice of a tensor.
"""
pass
def __mul__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
"""
Multiply a tensor by a scalar or one tensor by another.
"""
pass
def __radd__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
"""
Add a scalar to a tensor or two tensors together.
"""
pass
def __richcmp__(self, rhs: Union[Tensor, Scalar], op) -> "Tensor":
"""
Compare a tensor with a scalar or one tensor with another.
"""
pass
def __rmul__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
"""
Multiply a tensor by a scalar or one tensor by another.
"""
pass
def __sub__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
"""
Subtract a scalar from a tensor or one tensor from another.
"""
pass
def __truediv__(self, rhs: Union[Tensor, Scalar]) -> "Tensor":
"""
Divide a tensor by a scalar or one tensor by another.
"""
pass
def argmax_keepdim(self, dim: int) -> Tensor:
"""
Returns the indices of the maximum value(s) across the selected dimension.
"""
pass
def argmin_keepdim(self, dim: int) -> Tensor:
"""
Returns the indices of the minimum value(s) across the selected dimension.
"""
pass
def broadcast_add(self, rhs: Tensor) -> Tensor:
"""
Adds the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
"""
pass
def broadcast_as(self, shape: Sequence[int]) -> Tensor:
"""
Broadcasts the tensor to the given shape.
"""
pass
def broadcast_div(self, rhs: Tensor) -> Tensor:
"""
Divides the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
"""
pass
def broadcast_left(self, shape: Sequence[int]) -> Tensor:
"""
Broadcasts the tensor to the given shape, adding new dimensions on the left.
"""
pass
def broadcast_mul(self, rhs: Tensor) -> Tensor:
"""
Multiplies the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
"""
pass
def broadcast_sub(self, rhs: Tensor) -> Tensor:
"""
Subtracts the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
"""
pass
def contiguous(self) -> Tensor:
"""
Makes the tensor contiguous in memory.
"""
pass
def copy(self) -> Tensor:
"""
Returns a copy of the tensor.
"""
pass
def cos(self) -> Tensor:
"""
Performs the `cos` operation on the tensor.
"""
pass
def detach(self) -> Tensor:
"""
Detach the tensor from the computation graph.
"""
pass
@property
def device(self) -> Device:
"""
Gets the tensor's device.
"""
pass
@property
def dtype(self) -> DType:
"""
Gets the tensor's dtype.
"""
pass
def exp(self) -> Tensor:
"""
Performs the `exp` operation on the tensor.
"""
pass
def flatten_all(self) -> Tensor:
"""
Flattens the tensor into a 1D tensor.
"""
pass
def flatten_from(self, dim: int) -> Tensor:
"""
Flattens the tensor on the dimension indexes from `dim` (inclusive) to the last dimension.
"""
pass
def flatten_to(self, dim: int) -> Tensor:
"""
Flattens the tensor on the dimension indexes from `0` to `dim` (inclusive).
"""
pass
def get(self, index: int) -> Tensor:
"""
Gets the value at the specified index.
"""
pass
def index_select(self, rhs: Tensor, dim: int) -> Tensor:
"""
Select values for the input tensor at the target indexes across the specified dimension.
The `indexes` is argument is an int tensor with a single dimension.
The output has the same number of dimension as the `self` input. The target dimension of
the output has length the length of `indexes` and the values are taken from `self` using
the index from `indexes`. Other dimensions have the same number of elements as the input
tensor.
"""
pass
def is_contiguous(self) -> bool:
"""
Returns true if the tensor is contiguous in C order.
"""
pass
def is_fortran_contiguous(self) -> bool:
"""
Returns true if the tensor is contiguous in Fortran order.
"""
pass
def log(self) -> Tensor:
"""
Performs the `log` operation on the tensor.
"""
pass
def matmul(self, rhs: Tensor) -> Tensor:
"""
Performs a matrix multiplication between the two tensors.
"""
pass
def max_keepdim(self, dim: int) -> Tensor:
"""
Gathers the maximum value across the selected dimension.
"""
pass
def mean_all(self) -> Tensor:
"""
Returns the mean of the tensor.
"""
pass
def min_keepdim(self, dim: int) -> Tensor:
"""
Gathers the minimum value across the selected dimension.
"""
pass
def narrow(self, dim: int, start: int, len: int) -> Tensor:
"""
Returns a new tensor that is a narrowed version of the input, the dimension `dim`
ranges from `start` to `start + len`.
"""
pass
def powf(self, p: float) -> Tensor:
"""
Performs the `pow` operation on the tensor with the given exponent.
"""
pass
def quantize(self, quantized_dtype: str) -> QTensor:
"""
Quantize the tensor.
"""
pass
@property
def rank(self) -> int:
"""
Gets the tensor's rank.
"""
pass
def recip(self) -> Tensor:
"""
Get the `recip` of the tensor.
"""
pass
def reshape(self, shape: Sequence[int]) -> Tensor:
"""
Reshapes the tensor to the given shape.
"""
pass
@property
def shape(self) -> Tuple[int]:
"""
Gets the tensor's shape.
"""
pass
def sin(self) -> Tensor:
"""
Performs the `sin` operation on the tensor.
"""
pass
def sqr(self) -> Tensor:
"""
Squares the tensor.
"""
pass
def sqrt(self) -> Tensor:
"""
Calculates the square root of the tensor.
"""
pass
def squeeze(self, dim: int) -> Tensor:
"""
Creates a new tensor with the specified dimension removed if its size was one.
"""
pass
@property
def stride(self) -> Tuple[int]:
"""
Gets the tensor's strides.
"""
pass
def sum_all(self) -> Tensor:
"""
Returns the sum of the tensor.
"""
pass
def sum_keepdim(self, dim: Union[int, List[int]]) -> Tensor:
"""
Returns the sum of all elements in the input tensor. The sum is performed over all the input dimensions.
"""
pass
def t(self) -> Tensor:
"""
Transposes the tensor.
"""
pass
def to_device(self, device: Union[str, Device]) -> Tensor:
"""
Move the tensor to a new device.
"""
pass
def to_dtype(self, dtype: Union[str, DType]) -> Tensor:
"""
Convert the tensor to a new dtype.
"""
pass
def transpose(self, dim1: int, dim2: int) -> Tensor:
"""
Returns a tensor that is a transposed version of the input, the given dimensions are swapped.
"""
pass
def unsqueeze(self, dim: int) -> Tensor:
"""
Creates a new tensor with a dimension of size one inserted at the specified position.
"""
pass
def values(self) -> _ArrayLike:
"""
Gets the tensor's data as a Python scalar or array-like object.
"""
pass
def where_cond(self, on_true: Tensor, on_false: Tensor) -> Tensor:
"""
Returns a tensor with the same shape as the input tensor, the values are taken from
`on_true` if the input tensor value is not zero, and `on_false` at the positions where the
input tensor is equal to zero.
"""
pass
|