summaryrefslogtreecommitdiff
path: root/candle-pyo3/py_src/candle/models/llama.py
blob: fd9b30af3d62ccb8ba5bc8c86eb46796fe879f5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import candle
from typing import Dict, Tuple, Any
from candle import Tensor, QTensor, utils, nn
from candle.nn import Module, ModuleList


def masked_fill(on_false: Tensor, mask: Tensor, on_true: Tensor):
    shape = mask.shape
    on_true = candle.tensor(on_true).broadcast_as(shape)
    return mask.where_cond(on_true, on_false)


def precompute_freqs_cis(hparams: Dict[str, Any], freq_base: float, max_seq_len: int):
    head_dim = hparams["n_embd"] // hparams["n_head"]
    theta = [1.0 / freq_base ** (i / head_dim) for i in range(0, head_dim, 2)]
    theta = candle.tensor(theta)
    idx_theta = [float(i) for i in range(max_seq_len)]
    idx_theta = candle.tensor(idx_theta).reshape((max_seq_len, 1))
    m = idx_theta.matmul(theta.unsqueeze(0))
    return (m.cos(), m.sin())


class RmsNorm(Module):
    def __init__(self, qtensor: QTensor):
        super().__init__()
        self.weight = qtensor.dequantize()

    def forward(self, x: Tensor) -> Tensor:
        b_size, seq_len, hidden_size = x.shape
        norm_x = x.sqr().sum_keepdim(2) / hidden_size
        x_normed = x.broadcast_div((norm_x + 1e-5).sqrt())
        return x_normed.broadcast_mul(self.weight)


class QuantizedLayer(Module):
    def __init__(
        self,
        layer_idx: int,
        hparams: Dict[str, Any],
        all_tensors: Dict[str, QTensor],
        cos_sin: Tuple[Tensor, Tensor],
    ):
        super().__init__()
        p = f"layers.{layer_idx}"
        self.attention_wq = all_tensors[f"{p}.attention.wq.weight"]
        self.attention_wk = all_tensors[f"{p}.attention.wk.weight"]
        self.attention_wv = all_tensors[f"{p}.attention.wv.weight"]
        self.attention_wo = all_tensors[f"{p}.attention.wo.weight"]
        self.ffw1 = all_tensors[f"{p}.feed_forward.w1.weight"]
        self.ffw2 = all_tensors[f"{p}.feed_forward.w2.weight"]
        self.ffw3 = all_tensors[f"{p}.feed_forward.w3.weight"]
        self.attn_norm = RmsNorm(all_tensors[f"{p}.attention_norm.weight"])
        self.ffn_norm = RmsNorm(all_tensors[f"{p}.ffn_norm.weight"])

        self.n_head = hparams["n_head"]
        self.n_kv_head = self.n_head
        self.head_dim = hparams["n_embd"] // self.n_head

        self.kv_cache = None
        self.cos = cos_sin[0]
        self.sin = cos_sin[1]
        self._non_persistent_buffers_set.add("cos")
        self._non_persistent_buffers_set.add("sin")

    def forward(self, x: Tensor, mask: Tensor, index_pos: int) -> Tensor:
        residual = x
        x = self.attn_norm(x)
        attn = self.forward_attn(x, mask, index_pos)
        x = attn + residual

        residual = x
        x = self.ffn_norm(x)
        w1 = self.ffw1.matmul_t(x)
        w3 = self.ffw3.matmul_t(x)
        mlp = self.ffw2.matmul_t(nn.silu(w1) * w3)

        return mlp + residual

    def forward_attn(self, x: Tensor, mask: Tensor, index_pos: int):
        b_size, seq_len, n_embd = x.shape
        q = self.attention_wq.matmul_t(x)
        k = self.attention_wk.matmul_t(x)
        v = self.attention_wv.matmul_t(x)

        q = q.reshape((b_size, seq_len, self.n_head, self.head_dim)).transpose(1, 2)
        k = k.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2)
        v = v.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2)

        q = self.apply_rotary_emb(q, index_pos)
        k = self.apply_rotary_emb(k, index_pos)

        if self.kv_cache is not None and index_pos > 0:
            prev_k, prev_v = self.kv_cache
            k = candle.cat([prev_k, k], 2).contiguous()
            v = candle.cat([prev_v, v], 2).contiguous()

        self.kv_cache = (k, v)

        # TODO: maybe repeat k/v here if we start supporting MQA.

        att = q.matmul(k.t()) / self.head_dim**0.5
        mask = mask.broadcast_as(att.shape)
        att = masked_fill(att, mask, float("-inf"))
        att = nn.softmax(att, -1)
        y = att.matmul(v.contiguous())
        y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd))
        return self.attention_wo.matmul_t(y)

    def apply_rotary_emb(self, x: Tensor, index_pos: int):
        b_size, n_head, seq_len, n_embd = x.shape
        cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1))
        sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1))
        x = x.reshape((b_size, n_head, seq_len, n_embd // 2, 2))
        x0 = x.narrow(-1, 0, 1)
        x1 = x.narrow(-1, 1, 1)
        y0 = x0.broadcast_mul(cos) - x1.broadcast_mul(sin)
        y1 = x0.broadcast_mul(sin) + x1.broadcast_mul(cos)
        rope = candle.cat([y0, y1], -1)
        return rope.flatten_from(-2)


class QuantizedLlama(Module):
    def __init__(self, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor]):
        super().__init__()
        self.tok_embeddings = all_tensors["tok_embeddings.weight"].dequantize()
        self.norm = RmsNorm(all_tensors["norm.weight"])
        self.output = all_tensors["output.weight"]
        self.layers = ModuleList()
        rope_freq = hparams.get("rope_freq", 10000.0)
        cos_sin = precompute_freqs_cis(hparams, rope_freq, hparams["context_length"])
        for layer_idx in range(hparams["n_layer"]):
            layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin)
            self.layers.append(layer)

    def forward(self, token: Tensor, index_pos: int) -> Tensor:
        b_size, seq_len = token.shape
        vocab_size, hidden_size = self.tok_embeddings.shape
        token = token.reshape((b_size * seq_len,))
        x = self.tok_embeddings.index_select(token, 0)
        x = x.reshape((b_size, seq_len, hidden_size))

        mask = [int(j > i) for j in range(seq_len) for i in range(seq_len)]
        mask = candle.tensor(mask).reshape((seq_len, seq_len))

        for layer in self.layers:
            x = layer(x, mask, index_pos)
        x = self.norm(x)
        x = x.narrow(1, -1, 1).squeeze(1)
        x = self.output.matmul_t(x)
        return x