1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
|
#![allow(clippy::redundant_closure_call)]
use pyo3::exceptions::{PyTypeError, PyValueError};
use pyo3::prelude::*;
use pyo3::types::{IntoPyDict, PyDict, PyTuple};
use pyo3::ToPyObject;
use std::os::raw::c_long;
use std::sync::Arc;
use half::{bf16, f16};
use ::candle::{quantized::QTensor, DType, Device, Tensor, WithDType};
pub fn wrap_err(err: ::candle::Error) -> PyErr {
PyErr::new::<PyValueError, _>(format!("{err:?}"))
}
#[derive(Clone, Debug)]
struct PyShape(Vec<usize>);
impl<'source> pyo3::FromPyObject<'source> for PyShape {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let dims: Vec<usize> = pyo3::FromPyObject::extract(ob)?;
Ok(PyShape(dims))
}
}
impl From<PyShape> for ::candle::Shape {
fn from(val: PyShape) -> Self {
val.0.into()
}
}
#[derive(Clone, Debug)]
#[pyclass(name = "Tensor")]
/// A `candle` tensor.
struct PyTensor(Tensor);
impl std::ops::Deref for PyTensor {
type Target = Tensor;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[pyclass(name = "DType")]
/// A `candle` dtype.
struct PyDType(DType);
#[pymethods]
impl PyDType {
fn __repr__(&self) -> String {
format!("{:?}", self.0)
}
fn __str__(&self) -> String {
self.__repr__()
}
}
impl PyDType {
fn from_pyobject(ob: PyObject, py: Python<'_>) -> PyResult<Self> {
use std::str::FromStr;
if let Ok(dtype) = ob.extract::<&str>(py) {
let dtype = DType::from_str(dtype)
.map_err(|_| PyTypeError::new_err(format!("invalid dtype '{dtype}'")))?;
Ok(Self(dtype))
} else {
ob.extract(py)
}
}
}
static CUDA_DEVICE: std::sync::Mutex<Option<Device>> = std::sync::Mutex::new(None);
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum PyDevice {
Cpu,
Cuda,
}
impl PyDevice {
fn from_device(device: &Device) -> Self {
match device {
Device::Cpu => Self::Cpu,
Device::Cuda(_) => Self::Cuda,
}
}
fn as_device(&self) -> PyResult<Device> {
match self {
Self::Cpu => Ok(Device::Cpu),
Self::Cuda => {
let mut device = CUDA_DEVICE.lock().unwrap();
if let Some(device) = device.as_ref() {
return Ok(device.clone());
};
let d = Device::new_cuda(0).map_err(wrap_err)?;
*device = Some(d.clone());
Ok(d)
}
}
}
}
impl<'source> FromPyObject<'source> for PyDevice {
fn extract(ob: &'source PyAny) -> PyResult<Self> {
let device: &str = ob.extract()?;
let device = match device {
"cpu" => PyDevice::Cpu,
"cuda" => PyDevice::Cuda,
_ => Err(PyTypeError::new_err(format!("invalid device '{device}'")))?,
};
Ok(device)
}
}
impl ToPyObject for PyDevice {
fn to_object(&self, py: Python<'_>) -> PyObject {
let str = match self {
PyDevice::Cpu => "cpu",
PyDevice::Cuda => "cuda",
};
str.to_object(py)
}
}
trait PyWithDType: WithDType {
fn to_py(&self, py: Python<'_>) -> PyObject;
}
macro_rules! pydtype {
($ty:ty, $conv:expr) => {
impl PyWithDType for $ty {
fn to_py(&self, py: Python<'_>) -> PyObject {
$conv(*self).to_object(py)
}
}
};
}
pydtype!(u8, |v| v);
pydtype!(u32, |v| v);
pydtype!(i64, |v| v);
pydtype!(f16, f32::from);
pydtype!(bf16, f32::from);
pydtype!(f32, |v| v);
pydtype!(f64, |v| v);
fn actual_index(t: &Tensor, dim: usize, index: i64) -> ::candle::Result<usize> {
let dim = t.dim(dim)?;
if 0 <= index {
let index = index as usize;
if dim <= index {
::candle::bail!("index {index} is too large for tensor dimension {dim}")
}
Ok(index)
} else {
if (dim as i64) < -index {
::candle::bail!("index {index} is too low for tensor dimension {dim}")
}
Ok((dim as i64 + index) as usize)
}
}
fn actual_dim(t: &Tensor, dim: i64) -> ::candle::Result<usize> {
let rank = t.rank();
if 0 <= dim {
let dim = dim as usize;
if rank <= dim {
::candle::bail!("dimension index {dim} is too large for tensor rank {rank}")
}
Ok(dim)
} else {
if (rank as i64) < -dim {
::candle::bail!("dimension index {dim} is too low for tensor rank {rank}")
}
Ok((rank as i64 + dim) as usize)
}
}
// TODO: Something similar to this should probably be a part of candle core.
trait MapDType {
type Output;
fn f<T: PyWithDType>(&self, t: &Tensor) -> PyResult<Self::Output>;
fn map(&self, t: &Tensor) -> PyResult<Self::Output> {
match t.dtype() {
DType::U8 => self.f::<u8>(t),
DType::U32 => self.f::<u32>(t),
DType::I64 => self.f::<i64>(t),
DType::BF16 => self.f::<bf16>(t),
DType::F16 => self.f::<f16>(t),
DType::F32 => self.f::<f32>(t),
DType::F64 => self.f::<f64>(t),
}
}
}
enum Indexer {
Index(usize),
Slice(usize, usize),
Elipsis,
}
#[pymethods]
impl PyTensor {
#[new]
#[pyo3(text_signature = "(self, data:_ArrayLike)")]
// TODO: Handle arbitrary input dtype and shape.
/// Creates a new tensor from a Python value. The value can be a scalar or array-like object.
fn new(py: Python<'_>, data: PyObject) -> PyResult<Self> {
use Device::Cpu;
let tensor = if let Ok(vs) = data.extract::<u32>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<i64>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<f32>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<u32>>(py) {
let len = vs.len();
Tensor::from_vec(vs, len, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<i64>>(py) {
let len = vs.len();
Tensor::from_vec(vs, len, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<f32>>(py) {
let len = vs.len();
Tensor::from_vec(vs, len, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<Vec<u32>>>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<Vec<i64>>>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<Vec<f32>>>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<Vec<Vec<u32>>>>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<Vec<Vec<i64>>>>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = data.extract::<Vec<Vec<Vec<f32>>>>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else {
let ty = data.as_ref(py).get_type();
Err(PyTypeError::new_err(format!(
"incorrect type {ty} for tensor"
)))?
};
Ok(Self(tensor))
}
/// Gets the tensor's data as a Python scalar or array-like object.
/// &RETURNS&: _ArrayLike
fn values(&self, py: Python<'_>) -> PyResult<PyObject> {
struct M<'a>(Python<'a>);
impl<'a> MapDType for M<'a> {
type Output = PyObject;
fn f<T: PyWithDType>(&self, t: &Tensor) -> PyResult<Self::Output> {
match t.rank() {
0 => Ok(t.to_scalar::<T>().map_err(wrap_err)?.to_py(self.0)),
1 => {
let v = t.to_vec1::<T>().map_err(wrap_err)?;
let v = v.iter().map(|v| v.to_py(self.0)).collect::<Vec<_>>();
Ok(v.to_object(self.0))
}
2 => {
let v = t.to_vec2::<T>().map_err(wrap_err)?;
let v = v
.iter()
.map(|v| v.iter().map(|v| v.to_py(self.0)).collect())
.collect::<Vec<Vec<_>>>();
Ok(v.to_object(self.0))
}
3 => {
let v = t.to_vec3::<T>().map_err(wrap_err)?;
let v = v
.iter()
.map(|v| {
v.iter()
.map(|v| v.iter().map(|v| v.to_py(self.0)).collect())
.collect()
})
.collect::<Vec<Vec<Vec<_>>>>();
Ok(v.to_object(self.0))
}
n => Err(PyTypeError::new_err(format!(
"TODO: conversion to PyObject is not handled for rank {n}"
)))?,
}
}
}
// TODO: Handle arbitrary shapes.
M(py).map(self)
}
#[getter]
/// Gets the tensor's shape.
/// &RETURNS&: Tuple[int]
fn shape(&self, py: Python<'_>) -> PyObject {
PyTuple::new(py, self.0.dims()).to_object(py)
}
#[getter]
/// Gets the tensor's strides.
/// &RETURNS&: Tuple[int]
fn stride(&self, py: Python<'_>) -> PyObject {
PyTuple::new(py, self.0.stride()).to_object(py)
}
#[getter]
/// Gets the tensor's dtype.
/// &RETURNS&: DType
fn dtype(&self) -> PyDType {
PyDType(self.0.dtype())
}
#[getter]
/// Gets the tensor's device.
/// &RETURNS&: Device
fn device(&self, py: Python<'_>) -> PyObject {
PyDevice::from_device(self.0.device()).to_object(py)
}
#[getter]
/// Gets the tensor's rank.
/// &RETURNS&: int
fn rank(&self) -> usize {
self.0.rank()
}
fn __repr__(&self) -> String {
format!("{}", self.0)
}
fn __str__(&self) -> String {
self.__repr__()
}
/// Performs the `sin` operation on the tensor.
/// &RETURNS&: Tensor
fn sin(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.sin().map_err(wrap_err)?))
}
/// Performs the `cos` operation on the tensor.
/// &RETURNS&: Tensor
fn cos(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.cos().map_err(wrap_err)?))
}
/// Performs the `log` operation on the tensor.
/// &RETURNS&: Tensor
fn log(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.log().map_err(wrap_err)?))
}
/// Squares the tensor.
/// &RETURNS&: Tensor
fn sqr(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.sqr().map_err(wrap_err)?))
}
/// Calculates the square root of the tensor.
/// &RETURNS&: Tensor
fn sqrt(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.sqrt().map_err(wrap_err)?))
}
/// Get the `recip` of the tensor.
/// &RETURNS&: Tensor
fn recip(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.recip().map_err(wrap_err)?))
}
/// Performs the `exp` operation on the tensor.
/// &RETURNS&: Tensor
fn exp(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.exp().map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, p:float)")]
/// Performs the `pow` operation on the tensor with the given exponent.
/// &RETURNS&: Tensor
fn powf(&self, p: f64) -> PyResult<Self> {
Ok(PyTensor(self.0.powf(p).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, rhs:Tensor, dim:int)")]
/// Select values for the input tensor at the target indexes across the specified dimension.
///
/// The `indexes` is argument is an int tensor with a single dimension.
/// The output has the same number of dimension as the `self` input. The target dimension of
/// the output has length the length of `indexes` and the values are taken from `self` using
/// the index from `indexes`. Other dimensions have the same number of elements as the input
/// tensor.
/// &RETURNS&: Tensor
fn index_select(&self, rhs: &Self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.index_select(rhs, dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, rhs:Tensor)")]
/// Performs a matrix multiplication between the two tensors.
/// &RETURNS&: Tensor
fn matmul(&self, rhs: &Self) -> PyResult<Self> {
Ok(PyTensor(self.0.matmul(rhs).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, rhs:Tensor)")]
/// Adds the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
/// &RETURNS&: Tensor
fn broadcast_add(&self, rhs: &Self) -> PyResult<Self> {
Ok(PyTensor(self.0.broadcast_add(rhs).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, rhs:Tensor)")]
/// Subtracts the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
/// &RETURNS&: Tensor
fn broadcast_sub(&self, rhs: &Self) -> PyResult<Self> {
Ok(PyTensor(self.0.broadcast_sub(rhs).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, rhs:Tensor)")]
/// Multiplies the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
/// &RETURNS&: Tensor
fn broadcast_mul(&self, rhs: &Self) -> PyResult<Self> {
Ok(PyTensor(self.0.broadcast_mul(rhs).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, rhs:Tensor)")]
/// Divides the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
/// &RETURNS&: Tensor
fn broadcast_div(&self, rhs: &Self) -> PyResult<Self> {
Ok(PyTensor(self.0.broadcast_div(rhs).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, on_true:Tensor, on_false:Tensor)")]
/// Returns a tensor with the same shape as the input tensor, the values are taken from
/// `on_true` if the input tensor value is not zero, and `on_false` at the positions where the
/// input tensor is equal to zero.
/// &RETURNS&: Tensor
fn where_cond(&self, on_true: &Self, on_false: &Self) -> PyResult<Self> {
Ok(PyTensor(
self.0.where_cond(on_true, on_false).map_err(wrap_err)?,
))
}
#[getter]
/// Index a tensor.
/// &RETURNS&: Tensor
fn __getitem__(&self, py: Python, idx: PyObject) -> PyResult<Self> {
let mut indexers: Vec<Indexer> = vec![];
let dims = self.0.shape().dims();
let to_absolute_index = |index: isize, current_dim: usize| {
// Convert a relative index to an absolute index e.g. tensor[-1] -> tensor[0]
let actual_index = if index < 0 {
dims[current_dim] as isize + index
} else {
index
};
// Check that the index is in range
if actual_index < 0 || actual_index >= dims[current_dim] as isize {
return Err(PyTypeError::new_err(format!(
"index out of range for dimension '{i}' with indexer '{value}'",
i = current_dim,
value = index
)));
}
Ok(actual_index as usize)
};
if let Ok(index) = idx.extract(py) {
// Handle a single index e.g. tensor[0] or tensor[-1]
indexers.push(Indexer::Index(to_absolute_index(index, 0)?));
} else if let Ok(slice) = idx.downcast::<pyo3::types::PySlice>(py) {
// Handle a single slice e.g. tensor[0:1] or tensor[0:-1]
let index = slice.indices(dims[0] as c_long)?;
indexers.push(Indexer::Slice(index.start as usize, index.stop as usize));
} else if let Ok(tuple) = idx.downcast::<pyo3::types::PyTuple>(py) {
// Handle multiple indices e.g. tensor[0,0] or tensor[0:1,0:1]
if tuple.len() > dims.len() {
return Err(PyTypeError::new_err("provided too many indices"));
}
for (i, item) in tuple.iter().enumerate() {
if item.is_ellipsis() {
// Handle '...' e.g. tensor[..., 0]
if i > 0 {
return Err(PyTypeError::new_err("Ellipsis ('...') can only be used at the start of an indexing operation"));
}
indexers.push(Indexer::Elipsis);
} else if let Ok(slice) = item.downcast::<pyo3::types::PySlice>() {
// Handle slice
let index = slice.indices(dims[i] as c_long)?;
indexers.push(Indexer::Slice(index.start as usize, index.stop as usize));
} else if let Ok(index) = item.extract::<isize>() {
indexers.push(Indexer::Index(to_absolute_index(index, i)?));
} else {
return Err(PyTypeError::new_err("unsupported index"));
}
}
} else {
return Err(PyTypeError::new_err("unsupported index"));
}
let mut x = self.0.clone();
let mut current_dim = 0;
// Apply the indexers
for indexer in indexers.iter() {
x = match indexer {
Indexer::Index(n) => x
.narrow(current_dim, *n, 1)
.map_err(wrap_err)?
.squeeze(current_dim)
.map_err(wrap_err)?,
Indexer::Slice(start, stop) => {
let out = x
.narrow(current_dim, *start, stop.saturating_sub(*start))
.map_err(wrap_err)?;
current_dim += 1;
out
}
Indexer::Elipsis => {
// Elipsis is a special case, it means that all remaining dimensions should be selected => advance the current_dim to the last dimension we have indexers for
current_dim += dims.len() - (indexers.len() - 1);
x
}
}
}
Ok(Self(x))
}
/// Add two tensors.
/// &RETURNS&: Tensor
fn __add__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
self.0.broadcast_add(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 + rhs).map_err(wrap_err)?
} else {
Err(PyTypeError::new_err("unsupported rhs for add"))?
};
Ok(Self(tensor))
}
fn __radd__(&self, rhs: &PyAny) -> PyResult<Self> {
self.__add__(rhs)
}
/// Multiply two tensors.
/// &RETURNS&: Tensor
fn __mul__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
self.0.broadcast_mul(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 * rhs).map_err(wrap_err)?
} else {
Err(PyTypeError::new_err("unsupported rhs for mul"))?
};
Ok(Self(tensor))
}
fn __rmul__(&self, rhs: &PyAny) -> PyResult<Self> {
self.__mul__(rhs)
}
/// Subtract two tensors.
/// &RETURNS&: Tensor
fn __sub__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
self.0.broadcast_sub(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 - rhs).map_err(wrap_err)?
} else {
Err(PyTypeError::new_err("unsupported rhs for sub"))?
};
Ok(Self(tensor))
}
/// Divide two tensors.
/// &RETURNS&: Tensor
fn __truediv__(&self, rhs: &PyAny) -> PyResult<Self> {
let tensor = if let Ok(rhs) = rhs.extract::<Self>() {
self.0.broadcast_div(&rhs.0).map_err(wrap_err)?
} else if let Ok(rhs) = rhs.extract::<f64>() {
(&self.0 / rhs).map_err(wrap_err)?
} else {
Err(PyTypeError::new_err("unsupported rhs for div"))?
};
Ok(Self(tensor))
}
#[pyo3(text_signature = "(self, shape:Sequence[int])")]
/// Reshapes the tensor to the given shape.
/// &RETURNS&: Tensor
fn reshape(&self, shape: PyShape) -> PyResult<Self> {
Ok(PyTensor(self.0.reshape(shape).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, shape:Sequence[int])")]
/// Broadcasts the tensor to the given shape.
/// &RETURNS&: Tensor
fn broadcast_as(&self, shape: PyShape) -> PyResult<Self> {
Ok(PyTensor(self.0.broadcast_as(shape).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, shape:Sequence[int])")]
/// Broadcasts the tensor to the given shape, adding new dimensions on the left.
/// &RETURNS&: Tensor
fn broadcast_left(&self, shape: PyShape) -> PyResult<Self> {
Ok(PyTensor(self.0.broadcast_left(shape).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Creates a new tensor with the specified dimension removed if its size was one.
/// &RETURNS&: Tensor
fn squeeze(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.squeeze(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Creates a new tensor with a dimension of size one inserted at the specified position.
/// &RETURNS&: Tensor
fn unsqueeze(&self, dim: usize) -> PyResult<Self> {
Ok(PyTensor(self.0.unsqueeze(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, index:int)")]
/// Gets the value at the specified index.
/// &RETURNS&: Tensor
fn get(&self, index: i64) -> PyResult<Self> {
let index = actual_index(self, 0, index).map_err(wrap_err)?;
Ok(PyTensor(self.0.get(index).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim1:int, dim2:int)")]
/// Returns a tensor that is a transposed version of the input, the given dimensions are swapped.
/// &RETURNS&: Tensor
fn transpose(&self, dim1: usize, dim2: usize) -> PyResult<Self> {
Ok(PyTensor(self.0.transpose(dim1, dim2).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int, start:int, len:int)")]
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
/// ranges from `start` to `start + len`.
/// &RETURNS&: Tensor
fn narrow(&self, dim: i64, start: i64, len: usize) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
let start = actual_index(self, dim, start).map_err(wrap_err)?;
Ok(PyTensor(self.0.narrow(dim, start, len).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Returns the indices of the maximum value(s) across the selected dimension.
/// &RETURNS&: Tensor
fn argmax_keepdim(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.argmax_keepdim(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Returns the indices of the minimum value(s) across the selected dimension.
/// &RETURNS&: Tensor
fn argmin_keepdim(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.argmin_keepdim(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Gathers the maximum value across the selected dimension.
/// &RETURNS&: Tensor
fn max_keepdim(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.max_keepdim(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Gathers the minimum value across the selected dimension.
/// &RETURNS&: Tensor
fn min_keepdim(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.min_keepdim(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:Union[int, List[int]])")]
/// Returns the sum of all elements in the input tensor. The sum is performed over all the input dimensions.
/// &RETURNS&: Tensor
fn sum_keepdim(&self, dims: PyObject, py: Python<'_>) -> PyResult<Self> {
let dims = if let Ok(dim) = dims.extract::<usize>(py) {
vec![dim]
} else {
dims.extract::<Vec<usize>>(py)?
};
Ok(PyTensor(
self.0.sum_keepdim(dims.as_slice()).map_err(wrap_err)?,
))
}
/// Returns the sum of the tensor.
/// &RETURNS&: Tensor
fn sum_all(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.sum_all().map_err(wrap_err)?))
}
/// Returns the mean of the tensor.
/// &RETURNS&: Tensor
fn mean_all(&self) -> PyResult<Self> {
let elements = self.0.elem_count();
let sum = self.0.sum_all().map_err(wrap_err)?;
let mean = (sum / elements as f64).map_err(wrap_err)?;
Ok(PyTensor(mean))
}
#[pyo3(text_signature = "(self, dim:int)")]
/// Flattens the tensor on the dimension indexes from `dim` (inclusive) to the last dimension.
/// &RETURNS&: Tensor
fn flatten_from(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.flatten_from(dim).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dim:int)")]
///Flattens the tensor on the dimension indexes from `0` to `dim` (inclusive).
/// &RETURNS&: Tensor
fn flatten_to(&self, dim: i64) -> PyResult<Self> {
let dim = actual_dim(self, dim).map_err(wrap_err)?;
Ok(PyTensor(self.0.flatten_to(dim).map_err(wrap_err)?))
}
/// Flattens the tensor into a 1D tensor.
/// &RETURNS&: Tensor
fn flatten_all(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.flatten_all().map_err(wrap_err)?))
}
/// Transposes the tensor.
/// &RETURNS&: Tensor
fn t(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.t().map_err(wrap_err)?))
}
/// Makes the tensor contiguous in memory.
/// &RETURNS&: Tensor
fn contiguous(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.contiguous().map_err(wrap_err)?))
}
/// Returns true if the tensor is contiguous in C order.
/// &RETURNS&: bool
fn is_contiguous(&self) -> bool {
self.0.is_contiguous()
}
/// Returns true if the tensor is contiguous in Fortran order.
/// &RETURNS&: bool
fn is_fortran_contiguous(&self) -> bool {
self.0.is_fortran_contiguous()
}
/// Detach the tensor from the computation graph.
/// &RETURNS&: Tensor
fn detach(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.detach().map_err(wrap_err)?))
}
/// Returns a copy of the tensor.
/// &RETURNS&: Tensor
fn copy(&self) -> PyResult<Self> {
Ok(PyTensor(self.0.copy().map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, dtype:Union[str,DType])")]
/// Convert the tensor to a new dtype.
/// &RETURNS&: Tensor
fn to_dtype(&self, dtype: PyObject, py: Python<'_>) -> PyResult<Self> {
let dtype = PyDType::from_pyobject(dtype, py)?;
Ok(PyTensor(self.0.to_dtype(dtype.0).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, device:Union[str,Device])")]
/// Move the tensor to a new device.
/// &RETURNS&: Tensor
fn to_device(&self, device: PyDevice) -> PyResult<Self> {
let device = device.as_device()?;
Ok(PyTensor(self.0.to_device(&device).map_err(wrap_err)?))
}
#[pyo3(text_signature = "(self, quantized_dtype:str)")]
/// Quantize the tensor.
/// &RETURNS&: QTensor
fn quantize(&self, quantized_dtype: &str) -> PyResult<PyQTensor> {
use ::candle::quantized;
let res = match quantized_dtype.to_lowercase().as_str() {
"q2k" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ2K>(self),
"q3k" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ3K>(self),
"q4_0" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ4_0>(self),
"q4_1" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ4_1>(self),
"q4k" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ4K>(self),
"q5_0" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ5_0>(self),
"q5_1" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ5_1>(self),
"q5k" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ5K>(self),
"q6k" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ6K>(self),
"q8_0" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ8_0>(self),
"q8_1" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ8_1>(self),
"q8k" => quantized::QTensor::quantize::<quantized::k_quants::BlockQ8K>(self),
"f16" => quantized::QTensor::quantize::<f16>(self),
"f32" => quantized::QTensor::quantize::<f32>(self),
dt => {
return Err(PyErr::new::<PyValueError, _>(format!(
"unknown quantized-dtype {dt}"
)))
}
};
Ok(PyQTensor(Arc::new(res.map_err(wrap_err)?)))
}
}
#[pyfunction]
#[pyo3(text_signature = "(tensors:List[Tensor], dim:int )")]
/// Concatenate the tensors across one axis.
/// &RETURNS&: Tensor
fn cat(tensors: Vec<PyTensor>, dim: i64) -> PyResult<PyTensor> {
if tensors.is_empty() {
return Err(PyErr::new::<PyValueError, _>("empty input to cat"));
}
let dim = actual_dim(&tensors[0], dim).map_err(wrap_err)?;
let tensors = tensors.into_iter().map(|t| t.0).collect::<Vec<_>>();
let tensor = Tensor::cat(&tensors, dim).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(text_signature = "(tensors:List[Tensor], dim:int)")]
/// Stack the tensors along a new axis.
/// &RETURNS&: Tensor
fn stack(tensors: Vec<PyTensor>, dim: usize) -> PyResult<PyTensor> {
let tensors = tensors.into_iter().map(|t| t.0).collect::<Vec<_>>();
let tensor = Tensor::stack(&tensors, dim).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(text_signature = "(data:_ArrayLike)")]
/// Creates a new tensor from a Python value. The value can be a scalar or array-like object.
/// &RETURNS&: Tensor
fn tensor(py: Python<'_>, data: PyObject) -> PyResult<PyTensor> {
PyTensor::new(py, data)
}
#[pyfunction]
#[pyo3(signature = (shape, *, device=None), text_signature = "(shape:Sequence[int], device:Optional[Device]=None)")]
/// Creates a new tensor with random values.
/// &RETURNS&: Tensor
fn rand(_py: Python<'_>, shape: PyShape, device: Option<PyDevice>) -> PyResult<PyTensor> {
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
let tensor = Tensor::rand(0f32, 1f32, shape.0, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(signature = (shape, *, device=None), text_signature = "(shape:Sequence[int], device:Optional[Device]=None)")]
/// Creates a new tensor with random values from a normal distribution.
/// &RETURNS&: Tensor
fn randn(_py: Python<'_>, shape: PyShape, device: Option<PyDevice>) -> PyResult<PyTensor> {
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
let tensor = Tensor::randn(0f32, 1f32, shape.0, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(signature = (shape, *, dtype=None, device=None),text_signature = "(shape:Sequence[int], dtype:Optional[DType]=None, device:Optional[Device]=None)")]
/// Creates a new tensor filled with ones.
/// &RETURNS&: Tensor
fn ones(
py: Python<'_>,
shape: PyShape,
dtype: Option<PyObject>,
device: Option<PyDevice>,
) -> PyResult<PyTensor> {
let dtype = match dtype {
None => DType::F32,
Some(dtype) => PyDType::from_pyobject(dtype, py)?.0,
};
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
let tensor = Tensor::ones(shape.0, dtype, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(signature = (shape, *, dtype=None, device=None), text_signature = "(shape:Sequence[int], dtype:Optional[DType]=None, device:Optional[Device]=None)")]
/// Creates a new tensor filled with zeros.
/// &RETURNS&: Tensor
fn zeros(
py: Python<'_>,
shape: PyShape,
dtype: Option<PyObject>,
device: Option<PyDevice>,
) -> PyResult<PyTensor> {
let dtype = match dtype {
None => DType::F32,
Some(dtype) => PyDType::from_pyobject(dtype, py)?.0,
};
let device = device.unwrap_or(PyDevice::Cpu).as_device()?;
let tensor = Tensor::zeros(shape.0, dtype, &device).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[derive(Debug, Clone)]
#[pyclass(name = "QTensor")]
/// A quantized tensor.
struct PyQTensor(Arc<QTensor>);
impl std::ops::Deref for PyQTensor {
type Target = QTensor;
fn deref(&self) -> &Self::Target {
self.0.as_ref()
}
}
#[pymethods]
impl PyQTensor {
#[getter]
///Gets the tensors quantized dtype.
/// &RETURNS&: str
fn ggml_dtype(&self) -> String {
format!("{:?}", self.0.dtype())
}
#[getter]
///Gets the rank of the tensor.
/// &RETURNS&: int
fn rank(&self) -> usize {
self.0.rank()
}
#[getter]
///Gets the shape of the tensor.
/// &RETURNS&: Tuple[int]
fn shape(&self, py: Python<'_>) -> PyObject {
PyTuple::new(py, self.0.shape().dims()).to_object(py)
}
fn __repr__(&self) -> String {
format!("{:?}", self.0)
}
fn __str__(&self) -> String {
self.__repr__()
}
/// Dequantizes the tensor.
/// &RETURNS&: Tensor
fn dequantize(&self) -> PyResult<PyTensor> {
let tensor = self.0.dequantize(&Device::Cpu).map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyo3(text_signature = "(self, lhs:Tensor)")]
/// Performs a quantized matrix multiplication, with the quantized tensor as the right hand side.
/// &RETURNS&: Tensor
fn matmul_t(&self, lhs: &PyTensor) -> PyResult<PyTensor> {
let qmatmul = ::candle::quantized::QMatMul::from_arc(self.0.clone()).map_err(wrap_err)?;
let res = qmatmul.forward(lhs).map_err(wrap_err)?;
Ok(PyTensor(res))
}
}
#[pyfunction]
#[pyo3(text_signature = "(path:Union[str,PathLike])")]
/// Loads a safetensors file. Returns a dictionary mapping tensor names to tensors.
/// &RETURNS&: Dict[str,Tensor]
fn load_safetensors(path: &str, py: Python<'_>) -> PyResult<PyObject> {
let res = ::candle::safetensors::load(path, &Device::Cpu).map_err(wrap_err)?;
let res = res
.into_iter()
.map(|(key, value)| (key, PyTensor(value).into_py(py)))
.collect::<Vec<_>>();
Ok(res.into_py_dict(py).to_object(py))
}
#[pyfunction]
#[pyo3(text_signature = "(path:Union[str,PathLike], tensors:Dict[str,Tensor])")]
/// Saves a dictionary of tensors to a safetensors file.
/// &RETURNS&: None
fn save_safetensors(
path: &str,
tensors: std::collections::HashMap<String, PyTensor>,
) -> PyResult<()> {
let tensors = tensors
.into_iter()
.map(|(s, t)| (s, t.0))
.collect::<std::collections::HashMap<_, _>>();
::candle::safetensors::save(&tensors, path).map_err(wrap_err)
}
#[pyfunction]
#[pyo3(text_signature = "(path:Union[str,PathLike])")]
/// Load a GGML file. Returns a tuple of three objects: a dictionary mapping tensor names to tensors,
/// a dictionary mapping hyperparameter names to hyperparameter values, and a vocabulary.
/// &RETURNS&: Tuple[Dict[str,QTensor], Dict[str,Any], List[str]]
fn load_ggml(path: &str, py: Python<'_>) -> PyResult<(PyObject, PyObject, PyObject)> {
let mut file = std::fs::File::open(path)?;
let ggml = ::candle::quantized::ggml_file::Content::read(&mut file).map_err(wrap_err)?;
let tensors = ggml
.tensors
.into_iter()
.map(|(key, qtensor)| Ok((key, PyQTensor(Arc::new(qtensor)).into_py(py))))
.collect::<::candle::Result<Vec<_>>>()
.map_err(wrap_err)?;
let tensors = tensors.into_py_dict(py).to_object(py);
let hparams = [
("n_vocab", ggml.hparams.n_vocab),
("n_embd", ggml.hparams.n_embd),
("n_mult", ggml.hparams.n_mult),
("n_head", ggml.hparams.n_head),
("n_layer", ggml.hparams.n_layer),
("n_rot", ggml.hparams.n_rot),
("ftype", ggml.hparams.ftype),
];
let hparams = hparams.into_py_dict(py).to_object(py);
let vocab = ggml
.vocab
.token_score_pairs
.iter()
.map(|(bytes, _)| String::from_utf8_lossy(bytes.as_slice()).to_string())
.collect::<Vec<String>>()
.to_object(py);
Ok((tensors, hparams, vocab))
}
#[pyfunction]
#[pyo3(text_signature = "(path:Union[str,PathLike])")]
/// Loads a GGUF file. Returns a tuple of two dictionaries: the first maps tensor names to tensors,
/// and the second maps metadata keys to metadata values.
/// &RETURNS&: Tuple[Dict[str,QTensor], Dict[str,Any]]
fn load_gguf(path: &str, py: Python<'_>) -> PyResult<(PyObject, PyObject)> {
use ::candle::quantized::gguf_file;
fn gguf_value_to_pyobject(v: &gguf_file::Value, py: Python<'_>) -> PyResult<PyObject> {
let v: PyObject = match v {
gguf_file::Value::U8(x) => x.into_py(py),
gguf_file::Value::I8(x) => x.into_py(py),
gguf_file::Value::U16(x) => x.into_py(py),
gguf_file::Value::I16(x) => x.into_py(py),
gguf_file::Value::U32(x) => x.into_py(py),
gguf_file::Value::I32(x) => x.into_py(py),
gguf_file::Value::U64(x) => x.into_py(py),
gguf_file::Value::I64(x) => x.into_py(py),
gguf_file::Value::F32(x) => x.into_py(py),
gguf_file::Value::F64(x) => x.into_py(py),
gguf_file::Value::Bool(x) => x.into_py(py),
gguf_file::Value::String(x) => x.into_py(py),
gguf_file::Value::Array(x) => {
let list = pyo3::types::PyList::empty(py);
for elem in x.iter() {
list.append(gguf_value_to_pyobject(elem, py)?)?;
}
list.into()
}
};
Ok(v)
}
let mut file = std::fs::File::open(path)?;
let gguf = gguf_file::Content::read(&mut file).map_err(wrap_err)?;
let tensors = gguf
.tensor_infos
.keys()
.map(|key| {
let qtensor = gguf.tensor(&mut file, key)?;
Ok((key, PyQTensor(Arc::new(qtensor)).into_py(py)))
})
.collect::<::candle::Result<Vec<_>>>()
.map_err(wrap_err)?;
let tensors = tensors.into_py_dict(py).to_object(py);
let metadata = gguf
.metadata
.iter()
.map(|(key, value)| Ok((key, gguf_value_to_pyobject(value, py)?)))
.collect::<PyResult<Vec<_>>>()?
.into_py_dict(py)
.to_object(py);
Ok((tensors, metadata))
}
#[pyfunction]
#[pyo3(
text_signature = "(path:Union[str,PathLike], tensors:Dict[str,QTensor], metadata:Dict[str,Any])"
)]
/// Save quanitzed tensors and metadata to a GGUF file.
fn save_gguf(path: &str, tensors: PyObject, metadata: PyObject, py: Python<'_>) -> PyResult<()> {
use ::candle::quantized::gguf_file;
fn pyobject_to_gguf_value(v: &PyAny, py: Python<'_>) -> PyResult<gguf_file::Value> {
let v: gguf_file::Value = if let Ok(x) = v.extract::<u8>() {
gguf_file::Value::U8(x)
} else if let Ok(x) = v.extract::<i8>() {
gguf_file::Value::I8(x)
} else if let Ok(x) = v.extract::<u16>() {
gguf_file::Value::U16(x)
} else if let Ok(x) = v.extract::<i16>() {
gguf_file::Value::I16(x)
} else if let Ok(x) = v.extract::<u32>() {
gguf_file::Value::U32(x)
} else if let Ok(x) = v.extract::<i32>() {
gguf_file::Value::I32(x)
} else if let Ok(x) = v.extract::<u64>() {
gguf_file::Value::U64(x)
} else if let Ok(x) = v.extract::<i64>() {
gguf_file::Value::I64(x)
} else if let Ok(x) = v.extract::<f32>() {
gguf_file::Value::F32(x)
} else if let Ok(x) = v.extract::<f64>() {
gguf_file::Value::F64(x)
} else if let Ok(x) = v.extract::<bool>() {
gguf_file::Value::Bool(x)
} else if let Ok(x) = v.extract::<String>() {
gguf_file::Value::String(x)
} else if let Ok(x) = v.extract::<Vec<PyObject>>() {
let x = x
.into_iter()
.map(|f| pyobject_to_gguf_value(f.as_ref(py), py))
.collect::<PyResult<Vec<_>>>()?;
gguf_file::Value::Array(x)
} else {
return Err(PyErr::new::<PyValueError, _>(format!(
"unsupported type {:?}",
v
)));
};
Ok(v)
}
let tensors = tensors
.extract::<&PyDict>(py)
.map_err(|_| PyErr::new::<PyValueError, _>("expected a dict"))?
.iter()
.map(|(key, value)| {
Ok((
key.extract::<String>()
.map_err(|_| PyErr::new::<PyValueError, _>("keys must be strings"))?,
value.extract::<PyQTensor>()?.0,
))
})
.collect::<PyResult<Vec<_>>>()?;
let metadata = metadata
.extract::<&PyDict>(py)
.map_err(|_| PyErr::new::<PyValueError, _>("expected a dict"))?
.iter()
.map(|(key, value)| {
Ok((
key.extract::<String>()
.map_err(|_| PyErr::new::<PyValueError, _>("keys must be strings"))?,
pyobject_to_gguf_value(value, py)?,
))
})
.collect::<PyResult<Vec<_>>>()?;
let converted_metadata: Vec<_> = metadata
.iter()
.map(|(name, value)| (name.as_str(), value))
.collect();
let converted_tensors: Vec<_> = tensors
.iter()
.map(|(name, tensor)| (name.as_str(), tensor.as_ref()))
.collect();
let mut file = std::fs::File::create(path)?;
gguf_file::write(&mut file, &converted_metadata, &converted_tensors).map_err(wrap_err)
}
#[pyfunction]
/// Returns true if the 'cuda' backend is available.
/// &RETURNS&: bool
fn cuda_is_available() -> bool {
::candle::utils::cuda_is_available()
}
#[pyfunction]
/// Returns true if candle was compiled with 'accelerate' support.
/// &RETURNS&: bool
fn has_accelerate() -> bool {
::candle::utils::has_accelerate()
}
#[pyfunction]
/// Returns true if candle was compiled with MKL support.
/// &RETURNS&: bool
fn has_mkl() -> bool {
::candle::utils::has_mkl()
}
#[pyfunction]
/// Returns the number of threads used by the candle.
/// &RETURNS&: int
fn get_num_threads() -> usize {
::candle::utils::get_num_threads()
}
fn candle_utils(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(cuda_is_available, m)?)?;
m.add_function(wrap_pyfunction!(get_num_threads, m)?)?;
m.add_function(wrap_pyfunction!(has_accelerate, m)?)?;
m.add_function(wrap_pyfunction!(has_mkl, m)?)?;
m.add_function(wrap_pyfunction!(load_ggml, m)?)?;
m.add_function(wrap_pyfunction!(load_gguf, m)?)?;
m.add_function(wrap_pyfunction!(save_gguf, m)?)?;
m.add_function(wrap_pyfunction!(load_safetensors, m)?)?;
m.add_function(wrap_pyfunction!(save_safetensors, m)?)?;
Ok(())
}
#[pyfunction]
#[pyo3(text_signature = "(tensor:Tensor, dim:int)")]
/// Applies the Softmax function to a given tensor.#
/// &RETURNS&: Tensor
fn softmax(tensor: PyTensor, dim: i64) -> PyResult<PyTensor> {
let dim = actual_dim(&tensor, dim).map_err(wrap_err)?;
let sm = candle_nn::ops::softmax(&tensor.0, dim).map_err(wrap_err)?;
Ok(PyTensor(sm))
}
#[pyfunction]
#[pyo3(signature = (tensor, ksize, *, stride=1), text_signature = "(tensor:Tensor, ksize:int, stride:int=1)")]
/// Applies the 2d avg-pool function to a given tensor.#
/// &RETURNS&: Tensor
fn avg_pool2d(tensor: PyTensor, ksize: usize, stride: usize) -> PyResult<PyTensor> {
let tensor = tensor
.avg_pool2d_with_stride(ksize, stride)
.map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(signature = (tensor, ksize, *, stride=1), text_signature = "(tensor:Tensor, ksize:int, stride:int=1)")]
/// Applies the 2d max-pool function to a given tensor.#
/// &RETURNS&: Tensor
fn max_pool2d(tensor: PyTensor, ksize: usize, stride: usize) -> PyResult<PyTensor> {
let tensor = tensor
.max_pool2d_with_stride(ksize, stride)
.map_err(wrap_err)?;
Ok(PyTensor(tensor))
}
#[pyfunction]
#[pyo3(text_signature = "(tensor:Tensor)")]
/// Applies the Sigmoid Linear Unit (SiLU) function to a given tensor.
/// &RETURNS&: Tensor
fn silu(tensor: PyTensor) -> PyResult<PyTensor> {
let s = candle_nn::ops::silu(&tensor.0).map_err(wrap_err)?;
Ok(PyTensor(s))
}
#[pyfunction]
#[pyo3(text_signature = "(tensor:Tensor)")]
/// Applies the Gaussian Error Linear Unit (GELU) function to a given tensor.
/// &RETURNS&: Tensor
fn gelu(tensor: PyTensor) -> PyResult<PyTensor> {
let s = tensor.0.gelu_erf().map_err(wrap_err)?;
Ok(PyTensor(s))
}
#[pyfunction]
#[pyo3(text_signature = "(tensor:Tensor)")]
/// Applies the Rectified Linear Unit (ReLU) function to a given tensor.
/// &RETURNS&: Tensor
fn relu(tensor: PyTensor) -> PyResult<PyTensor> {
let s = tensor.0.relu().map_err(wrap_err)?;
Ok(PyTensor(s))
}
#[pyfunction]
#[pyo3(text_signature = "(tensor:Tensor)")]
/// Applies the tanh function to a given tensor.
/// &RETURNS&: Tensor
fn tanh(tensor: PyTensor) -> PyResult<PyTensor> {
let s = tensor.0.tanh().map_err(wrap_err)?;
Ok(PyTensor(s))
}
fn candle_functional_m(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(silu, m)?)?;
m.add_function(wrap_pyfunction!(softmax, m)?)?;
m.add_function(wrap_pyfunction!(max_pool2d, m)?)?;
m.add_function(wrap_pyfunction!(avg_pool2d, m)?)?;
m.add_function(wrap_pyfunction!(gelu, m)?)?;
m.add_function(wrap_pyfunction!(relu, m)?)?;
m.add_function(wrap_pyfunction!(tanh, m)?)?;
Ok(())
}
#[pymodule]
fn candle(py: Python<'_>, m: &PyModule) -> PyResult<()> {
let utils = PyModule::new(py, "utils")?;
candle_utils(py, utils)?;
m.add_submodule(utils)?;
let nn = PyModule::new(py, "functional")?;
candle_functional_m(py, nn)?;
m.add_submodule(nn)?;
m.add_class::<PyTensor>()?;
m.add_class::<PyQTensor>()?;
m.add_class::<PyDType>()?;
m.add("u8", PyDType(DType::U8))?;
m.add("u32", PyDType(DType::U32))?;
m.add("i16", PyDType(DType::I64))?;
m.add("bf16", PyDType(DType::BF16))?;
m.add("f16", PyDType(DType::F16))?;
m.add("f32", PyDType(DType::F32))?;
m.add("f64", PyDType(DType::F64))?;
m.add_function(wrap_pyfunction!(cat, m)?)?;
m.add_function(wrap_pyfunction!(ones, m)?)?;
m.add_function(wrap_pyfunction!(rand, m)?)?;
m.add_function(wrap_pyfunction!(randn, m)?)?;
m.add_function(wrap_pyfunction!(tensor, m)?)?;
m.add_function(wrap_pyfunction!(stack, m)?)?;
m.add_function(wrap_pyfunction!(zeros, m)?)?;
Ok(())
}
|