1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
import candle
from candle import Tensor
import pytest
def test_tensor_can_be_constructed():
t = Tensor(42.0)
assert t.values() == 42.0
def test_tensor_can_be_constructed_from_list():
t = Tensor([3.0, 1, 4, 1, 5, 9, 2, 6])
assert t.values() == [3.0, 1, 4, 1, 5, 9, 2, 6]
def test_tensor_can_be_constructed_from_list_of_lists():
t = Tensor([[3.0, 1, 4, 1], [5, 9, 2, 6]])
assert t.values() == [[3.0, 1, 4, 1], [5, 9, 2, 6]]
def test_tensor_can_be_quantized():
t = candle.randn((16, 256))
for format in [
"q4_0",
"q4_1",
"q5_0",
"q5_1",
"q8_0",
"q2k",
"q3k",
"q4k",
"q5k",
"q8k",
]:
for formatted_format in [format.upper(), format.lower()]:
quant_t = t.quantize(formatted_format)
assert quant_t.ggml_dtype.lower() == format.lower()
assert quant_t.shape == t.shape
def test_tensor_can_be_indexed():
t = Tensor([[3.0, 1, 4, 1], [5, 9, 2, 6]])
assert t[0].values() == [3.0, 1.0, 4.0, 1.0]
assert t[1].values() == [5.0, 9.0, 2.0, 6.0]
assert t[-1].values() == [5.0, 9.0, 2.0, 6.0]
assert t[-2].values() == [3.0, 1.0, 4.0, 1.0]
def test_tensor_can_be_sliced():
t = Tensor([3.0, 1, 4, 10, 5, 9, 2, 6])
assert t[0:4].values() == [3.0, 1.0, 4.0, 10.0]
assert t[4:8].values() == [5.0, 9.0, 2.0, 6.0]
assert t[-4:].values() == [5.0, 9.0, 2.0, 6.0]
assert t[:-4].values() == [3.0, 1.0, 4.0, 10.0]
assert t[-4:-2].values() == [5.0, 9.0]
def test_tensor_can_be_sliced_2d():
t = Tensor([[3.0, 1, 4, 1], [5, 9, 2, 6]])
assert t[:, 0].values() == [3.0, 5]
assert t[:, 1].values() == [1.0, 9.0]
assert t[0, 0].values() == 3.0
assert t[:, -1].values() == [1.0, 6.0]
assert t[:, -4].values() == [3.0, 5]
assert t[..., 0].values() == [3.0, 5]
def test_tensor_can_be_scliced_3d():
t = Tensor([[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]])
assert t[:, :, 0].values() == [[1, 5], [9, 13]]
assert t[:, :, 0:2].values() == [[[1, 2], [5, 6]], [[9, 10], [13, 14]]]
assert t[:, 0, 0].values() == [1, 9]
assert t[..., 0].values() == [[1, 5], [9, 13]]
assert t[..., 0:2].values() == [[[1, 2], [5, 6]], [[9, 10], [13, 14]]]
def test_tensor_can_be_added():
t = Tensor(42.0)
result = t + t
assert result.values() == 84.0
result = t + 2.0
assert result.values() == 44.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_add(b)
c = a + b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d + e
def test_tensor_can_be_subtracted():
t = Tensor(42.0)
result = t - t
assert result.values() == 0
result = t - 2.0
assert result.values() == 40.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_sub(b)
c = a - b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d - e
def test_tensor_can_be_multiplied():
t = Tensor(42.0)
result = t * t
assert result.values() == 1764.0
result = t * 2.0
assert result.values() == 84.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_mul(b)
c = a * b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d * e
def test_tensor_can_be_divided():
t = Tensor(42.0)
result = t / t
assert result.values() == 1.0
result = t / 2.0
assert result.values() == 21.0
a = candle.rand((3, 1, 4))
b = candle.rand((2, 1))
c_native = a.broadcast_div(b)
c = a / b
assert c.shape == (3, 2, 4)
assert c.values() == c_native.values()
with pytest.raises(ValueError):
d = candle.rand((3, 4, 5))
e = candle.rand((4, 6))
f = d / e
|