1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
|
//! FastViT inference implementation based on timm
//!
//! See "FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization"
//! https://arxiv.org/pdf/2303.14189
//!
//! https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/fastvit.py
use candle::{DType, Result, Tensor, D};
use candle_nn::{
batch_norm, conv2d, conv2d_no_bias, linear, linear_no_bias, ops::sigmoid, ops::softmax,
BatchNorm, Conv2d, Conv2dConfig, Func, VarBuilder,
};
#[derive(Clone, Debug)]
pub struct Config {
exp_ratio: usize,
in_channels: usize,
blocks: [usize; 4],
attn: bool,
lkc_use_act: bool,
}
impl Config {
pub fn t8() -> Self {
Self {
exp_ratio: 3,
in_channels: 48,
blocks: [2, 2, 4, 2],
attn: false,
lkc_use_act: false,
}
}
pub fn t12() -> Self {
Self {
exp_ratio: 3,
in_channels: 64,
blocks: [2, 2, 6, 2],
attn: false,
lkc_use_act: false,
}
}
pub fn s12() -> Self {
Self {
exp_ratio: 4,
in_channels: 64,
blocks: [2, 2, 6, 2],
attn: false,
lkc_use_act: false,
}
}
pub fn sa12() -> Self {
Self {
exp_ratio: 4,
in_channels: 64,
blocks: [2, 2, 6, 2],
attn: true,
lkc_use_act: false,
}
}
pub fn sa24() -> Self {
Self {
exp_ratio: 4,
in_channels: 64,
blocks: [4, 4, 12, 4],
attn: true,
lkc_use_act: false,
}
}
pub fn sa36() -> Self {
Self {
exp_ratio: 4,
in_channels: 64,
blocks: [6, 6, 18, 6],
attn: true,
lkc_use_act: false,
}
}
pub fn ma36() -> Self {
Self {
exp_ratio: 4,
in_channels: 76,
blocks: [6, 6, 18, 6],
attn: true,
lkc_use_act: false,
}
}
// configs used by MobileCLIP's image encoder
pub fn mci0() -> Self {
Self {
exp_ratio: 3,
in_channels: 64,
blocks: [2, 6, 10, 2],
attn: true,
lkc_use_act: true,
}
}
pub fn mci1() -> Self {
Self {
exp_ratio: 3,
in_channels: 64,
blocks: [4, 12, 20, 4],
attn: true,
lkc_use_act: true,
}
}
pub fn mci2() -> Self {
Self {
exp_ratio: 3,
in_channels: 80,
blocks: [4, 12, 24, 4],
attn: true,
lkc_use_act: true,
}
}
}
fn conv_norm(
in_channels: usize,
out_channels: usize,
kernel: usize,
stride: usize,
vb: VarBuilder,
) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
stride,
padding: kernel / 2,
groups: in_channels,
..Default::default()
};
let bn = batch_norm(out_channels, 1e-5, vb.pp("bn"))?;
let conv = conv2d_no_bias(in_channels, out_channels, kernel, conv2d_cfg, vb.pp("conv"))?;
let conv = conv.absorb_bn(&bn)?;
Ok(Func::new(move |xs| {
let xs = xs.apply(&conv)?;
Ok(xs)
}))
}
fn conv_mlp(dim: usize, exp_ratio: usize, vb: VarBuilder) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
..Default::default()
};
let conv = conv_norm(dim, dim, 7, 1, vb.pp("conv"))?;
let fc1 = conv2d(dim, dim * exp_ratio, 1, conv2d_cfg, vb.pp("fc1"))?;
let fc2 = conv2d(dim * exp_ratio, dim, 1, conv2d_cfg, vb.pp("fc2"))?;
Ok(Func::new(move |xs| {
let xs = xs.apply(&conv)?.apply(&fc1)?.gelu_erf()?.apply(&fc2)?;
Ok(xs)
}))
}
fn squeeze_and_excitation(
in_channels: usize,
squeeze_channels: usize,
vb: VarBuilder,
) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
..Default::default()
};
let fc1 = conv2d(in_channels, squeeze_channels, 1, conv2d_cfg, vb.pp("fc1"))?;
let fc2 = conv2d(squeeze_channels, in_channels, 1, conv2d_cfg, vb.pp("fc2"))?;
Ok(Func::new(move |xs| {
let residual = xs;
let xs = xs.mean_keepdim(D::Minus2)?.mean_keepdim(D::Minus1)?;
let xs = sigmoid(&xs.apply(&fc1)?.relu()?.apply(&fc2)?)?;
residual.broadcast_mul(&xs)
}))
}
// fuses a convolutional kernel and a batchnorm layer into a convolutional layer
// based on the _fuse_bn_tensor method in timm
// see https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/byobnet.py#L602
fn fuse_conv_bn(weights: &Tensor, bn: BatchNorm) -> Result<(Tensor, Tensor)> {
let (gamma, beta) = bn.weight_and_bias().unwrap();
let mu = bn.running_mean();
let sigma = (bn.running_var() + bn.eps())?.sqrt();
let gps = (gamma / sigma)?;
let bias = (beta - mu * &gps)?;
let weights = weights.broadcast_mul(&gps.reshape(((), 1, 1, 1))?)?;
Ok((weights, bias))
}
fn mobileone_block(
in_channels: usize,
out_channels: usize,
kernel: usize,
stride: usize,
group_size: usize,
use_act: bool,
vb: VarBuilder,
) -> Result<Func<'static>> {
let groups = if group_size == 0 {
1
} else {
in_channels / group_size
};
let padding = kernel / 2;
let conv2d_cfg = Conv2dConfig {
stride,
groups,
padding,
..Default::default()
};
let mut w = Tensor::zeros(
(out_channels, in_channels / groups, kernel, kernel),
DType::F32,
vb.device(),
)?;
let dim = out_channels;
let mut b = Tensor::zeros(dim, DType::F32, vb.device())?;
let conv_kxk_bn = batch_norm(dim, 1e-5, vb.pp("conv_kxk.0.bn"));
let conv_kxk = conv2d_no_bias(
in_channels,
out_channels,
kernel,
conv2d_cfg,
vb.pp("conv_kxk.0.conv"),
);
if let (Ok(conv), Ok(bn)) = (conv_kxk, conv_kxk_bn) {
let (wk, bk) = fuse_conv_bn(conv.weight(), bn)?;
w = (w + wk)?;
b = (b + bk)?;
};
let conv_scale_bn = batch_norm(dim, 1e-5, vb.pp("conv_scale.bn"));
let conv_scale = conv2d_no_bias(
in_channels,
out_channels,
1,
conv2d_cfg,
vb.pp("conv_scale.conv"),
);
if let (Ok(conv), Ok(bn)) = (conv_scale, conv_scale_bn) {
let (ws, bs) = fuse_conv_bn(conv.weight(), bn)?;
// pad to 3x3
let ws = ws
.pad_with_zeros(D::Minus1, 1, 1)?
.pad_with_zeros(D::Minus2, 1, 1)?;
w = (w + ws)?;
b = (b + bs)?;
};
let se = squeeze_and_excitation(out_channels, out_channels / 16, vb.pp("se"));
// read and reparameterize the identity bn into wi and bi
let identity_bn = batch_norm(dim, 1e-5, vb.pp("identity"));
if let Ok(id_bn) = identity_bn {
let mut weights: Vec<f32> = vec![0.0; w.elem_count()];
let id = in_channels / groups;
// See https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/byobnet.py#L809
for i in 0..in_channels {
if kernel > 1 {
weights[i * kernel * kernel + 4] = 1.0;
} else {
weights[i * (id + 1)] = 1.0;
}
}
let weights = &Tensor::from_vec(weights, w.shape(), w.device())?;
let (wi, bi) = fuse_conv_bn(weights, id_bn)?;
w = (w + wi)?;
b = (b + bi)?;
};
let reparam_conv = Conv2d::new(w, Some(b), conv2d_cfg);
Ok(Func::new(move |xs| {
let mut xs = xs.apply(&reparam_conv)?;
if let Ok(f) = &se {
xs = xs.apply(f)?;
}
if use_act {
xs = xs.gelu_erf()?;
};
Ok(xs)
}))
}
fn repmixer(dim: usize, kernel: usize, vb: VarBuilder) -> Result<Func<'static>> {
let gamma = vb.get((dim, 1, 1), "layer_scale.gamma")?;
let norm = mobileone_block(dim, dim, kernel, 1, 1, false, vb.pp("norm"))?;
let mixer = mobileone_block(dim, dim, kernel, 1, 1, false, vb.pp("mixer"))?;
Ok(Func::new(move |xs| {
let residual = xs.clone();
let xs = (xs.apply(&mixer)? - xs.apply(&norm)?)?;
let xs = xs.broadcast_mul(&gamma.reshape((1, (), 1, 1))?)?;
let xs = (xs + residual)?;
Ok(xs)
}))
}
fn repmixer_block(dim: usize, exp_ratio: usize, vb: VarBuilder) -> Result<Func<'static>> {
let gamma = vb.get((dim, 1, 1), "layer_scale.gamma")?;
let token_mixer = repmixer(dim, 3, vb.pp("token_mixer"))?;
let mlp = conv_mlp(dim, exp_ratio, vb.pp("mlp"))?;
Ok(Func::new(move |xs| {
let residual = xs.apply(&token_mixer)?;
let mut xs = residual.apply(&mlp)?;
xs = xs.broadcast_mul(&gamma.reshape((1, (), 1, 1))?)?;
let xs = (xs + residual)?;
Ok(xs)
}))
}
fn positional_encoding(dim: usize, vb: VarBuilder) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
stride: 1,
padding: 3,
groups: dim,
..Default::default()
};
let conv = conv2d(dim, dim, 7, conv2d_cfg, vb.pp("pos_enc"))?;
Ok(Func::new(move |xs| {
let xs = (xs + xs.apply(&conv)?)?;
Ok(xs)
}))
}
fn attention(dim: usize, vb: VarBuilder) -> Result<Func<'static>> {
let qkv = linear_no_bias(dim, dim * 3, vb.pp("qkv"))?;
let proj = linear(dim, dim, vb.pp("proj"))?;
let head_dim = 32;
let num_heads = dim / head_dim;
let scale = (head_dim as f64).powf(-0.5);
Ok(Func::new(move |xs| {
let xs = xs.clone();
let (b, c, h, w) = xs.dims4()?;
let n = h * w;
let xs = xs.flatten_from(2)?.transpose(D::Minus1, D::Minus2)?;
let qkv = xs
.apply(&qkv)?
.reshape((b, n, 3, num_heads, head_dim))?
.permute((2, 0, 3, 1, 4))?;
let q = qkv.get(0)?;
let k = qkv.get(1)?;
let v = qkv.get(2)?;
let q = (q * scale)?;
let att = q.matmul(&k.transpose(D::Minus2, D::Minus1)?)?;
let att = softmax(&att, D::Minus1)?;
let xs = att.matmul(&v)?;
let xs = xs.transpose(1, 2)?.reshape((b, n, c))?;
let xs = xs.apply(&proj)?;
let xs = xs.transpose(D::Minus1, D::Minus2)?.reshape((b, c, h, w))?;
Ok(xs)
}))
}
fn attention_block(dim: usize, exp_ratio: usize, vb: VarBuilder) -> Result<Func<'static>> {
let gamma1 = vb.get((dim, 1, 1), "layer_scale_1.gamma")?;
let gamma2 = vb.get((dim, 1, 1), "layer_scale_2.gamma")?;
let norm = batch_norm(dim, 1e-5, vb.pp("norm"))?;
let token_mixer = attention(dim, vb.pp("token_mixer"))?;
let mlp = conv_mlp(dim, exp_ratio, vb.pp("mlp"))?;
Ok(Func::new(move |xs| {
let xs = xs.clone();
let xs = (&xs
+ &xs
.apply_t(&norm, false)?
.apply(&token_mixer)?
.broadcast_mul(&gamma1.reshape((1, (), 1, 1))?)?)?;
let xs = (&xs
+ &xs
.apply(&mlp)?
.broadcast_mul(&gamma2.reshape((1, (), 1, 1))?)?)?;
Ok(xs)
}))
}
fn fastvit_stage(cfg: &Config, idx: usize, vb: VarBuilder) -> Result<Func<'static>> {
let nblocks = cfg.blocks[idx];
let mut blocks = Vec::with_capacity(nblocks);
let dim = cfg.in_channels << idx;
let downsample = fastvit_patch_embed(dim / 2, dim, cfg.lkc_use_act, vb.pp("downsample"));
for block_idx in 0..nblocks {
let block = if cfg.attn && idx == 3 {
attention_block(dim, cfg.exp_ratio, vb.pp(format!("blocks.{block_idx}")))?
} else {
repmixer_block(dim, cfg.exp_ratio, vb.pp(format!("blocks.{block_idx}")))?
};
blocks.push(block);
}
let pos_emb = positional_encoding(dim, vb.pp("pos_emb"));
Ok(Func::new(move |xs| {
let mut xs = xs.clone();
if let Ok(ds) = &downsample {
xs = xs.apply(ds)?;
}
if let Ok(pos) = &pos_emb {
xs = xs.apply(pos)?;
}
for block in blocks.iter() {
xs = xs.apply(block)?;
}
Ok(xs)
}))
}
fn fastvit_patch_embed(
in_channels: usize,
out_channels: usize,
use_act: bool,
vb: VarBuilder,
) -> Result<Func<'static>> {
let lk = conv_norm(in_channels, out_channels, 7, 2, vb.pp("proj.0.large_conv"))?;
let sk = conv_norm(in_channels, out_channels, 3, 2, vb.pp("proj.0.small_conv"))?;
let se = squeeze_and_excitation(out_channels, out_channels / 4, vb.pp("proj.0.se"));
let mb = mobileone_block(out_channels, out_channels, 1, 1, 0, true, vb.pp("proj.1"))?;
Ok(Func::new(move |xs| {
let mut xs = (xs.apply(&lk)? + xs.apply(&sk)?)?;
if let Ok(f) = &se {
xs = xs.apply(f)?;
}
if use_act {
xs = xs.gelu_erf()?;
};
let xs = xs.apply(&mb)?;
Ok(xs)
}))
}
fn fastvit_stem(in_channels: usize, out_channels: usize, vb: VarBuilder) -> Result<Func<'static>> {
let mb0 = mobileone_block(in_channels, out_channels, 3, 2, 0, true, vb.pp(0))?;
let mb1 = mobileone_block(out_channels, out_channels, 3, 2, 1, true, vb.pp(1))?;
let mb2 = mobileone_block(out_channels, out_channels, 1, 1, 0, true, vb.pp(2))?;
Ok(Func::new(move |xs| {
let xs = xs.apply(&mb0)?.apply(&mb1)?.apply(&mb2)?;
Ok(xs)
}))
}
// Build a fastvit model for a given configuration.
fn fastvit_model(cfg: &Config, nclasses: Option<usize>, vb: VarBuilder) -> Result<Func<'static>> {
let cls = match nclasses {
None => None,
Some(nclasses) => {
let linear = linear(cfg.in_channels * 16, nclasses, vb.pp("head.fc"))?;
Some(linear)
}
};
let stem = fastvit_stem(3, cfg.in_channels, vb.pp("stem"))?;
let final_conv = mobileone_block(
cfg.in_channels * 8,
cfg.in_channels * 16,
3,
1,
1,
true,
vb.pp("final_conv"),
)?;
let vb = vb.pp("stages");
let stage1 = fastvit_stage(cfg, 0, vb.pp(0))?;
let stage2 = fastvit_stage(cfg, 1, vb.pp(1))?;
let stage3 = fastvit_stage(cfg, 2, vb.pp(2))?;
let stage4 = fastvit_stage(cfg, 3, vb.pp(3))?;
Ok(Func::new(move |xs| {
let xs = xs
.apply(&stem)?
.apply(&stage1)?
.apply(&stage2)?
.apply(&stage3)?
.apply(&stage4)?
.apply(&final_conv)?;
match &cls {
None => Ok(xs),
Some(cls) => xs.mean(D::Minus2)?.mean(D::Minus1)?.apply(cls),
}
}))
}
pub fn fastvit(cfg: &Config, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
fastvit_model(cfg, Some(nclasses), vb)
}
pub fn fastvit_no_final_layer(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
fastvit_model(cfg, None, vb)
}
|