1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
use candle::{Module, Result, Tensor, D};
use candle_nn as nn;
use super::projections::{AttnProjections, Mlp, Qkv, QkvOnlyAttnProjections};
pub struct ModulateIntermediates {
gate_msa: Tensor,
shift_mlp: Tensor,
scale_mlp: Tensor,
gate_mlp: Tensor,
}
pub struct DiTBlock {
norm1: LayerNormNoAffine,
attn: AttnProjections,
norm2: LayerNormNoAffine,
mlp: Mlp,
ada_ln_modulation: nn::Sequential,
}
pub struct LayerNormNoAffine {
eps: f64,
}
impl LayerNormNoAffine {
pub fn new(eps: f64) -> Self {
Self { eps }
}
}
impl Module for LayerNormNoAffine {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
nn::LayerNorm::new_no_bias(Tensor::ones_like(x)?, self.eps).forward(x)
}
}
impl DiTBlock {
pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
let norm1 = LayerNormNoAffine::new(1e-6);
let attn = AttnProjections::new(hidden_size, num_heads, vb.pp("attn"))?;
let norm2 = LayerNormNoAffine::new(1e-6);
let mlp_ratio = 4;
let mlp = Mlp::new(hidden_size, hidden_size * mlp_ratio, vb.pp("mlp"))?;
let n_mods = 6;
let ada_ln_modulation = nn::seq().add(nn::Activation::Silu).add(nn::linear(
hidden_size,
n_mods * hidden_size,
vb.pp("adaLN_modulation.1"),
)?);
Ok(Self {
norm1,
attn,
norm2,
mlp,
ada_ln_modulation,
})
}
pub fn pre_attention(&self, x: &Tensor, c: &Tensor) -> Result<(Qkv, ModulateIntermediates)> {
let modulation = self.ada_ln_modulation.forward(c)?;
let chunks = modulation.chunk(6, D::Minus1)?;
let (shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp) = (
chunks[0].clone(),
chunks[1].clone(),
chunks[2].clone(),
chunks[3].clone(),
chunks[4].clone(),
chunks[5].clone(),
);
let norm_x = self.norm1.forward(x)?;
let modulated_x = modulate(&norm_x, &shift_msa, &scale_msa)?;
let qkv = self.attn.pre_attention(&modulated_x)?;
Ok((
qkv,
ModulateIntermediates {
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
},
))
}
pub fn post_attention(
&self,
attn: &Tensor,
x: &Tensor,
mod_interm: &ModulateIntermediates,
) -> Result<Tensor> {
let attn_out = self.attn.post_attention(attn)?;
let x = x.add(&attn_out.broadcast_mul(&mod_interm.gate_msa.unsqueeze(1)?)?)?;
let norm_x = self.norm2.forward(&x)?;
let modulated_x = modulate(&norm_x, &mod_interm.shift_mlp, &mod_interm.scale_mlp)?;
let mlp_out = self.mlp.forward(&modulated_x)?;
let x = x.add(&mlp_out.broadcast_mul(&mod_interm.gate_mlp.unsqueeze(1)?)?)?;
Ok(x)
}
}
pub struct SelfAttnModulateIntermediates {
gate_msa: Tensor,
shift_mlp: Tensor,
scale_mlp: Tensor,
gate_mlp: Tensor,
gate_msa2: Tensor,
}
pub struct SelfAttnDiTBlock {
norm1: LayerNormNoAffine,
attn: AttnProjections,
attn2: AttnProjections,
norm2: LayerNormNoAffine,
mlp: Mlp,
ada_ln_modulation: nn::Sequential,
}
impl SelfAttnDiTBlock {
pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
let norm1 = LayerNormNoAffine::new(1e-6);
let attn = AttnProjections::new(hidden_size, num_heads, vb.pp("attn"))?;
let attn2 = AttnProjections::new(hidden_size, num_heads, vb.pp("attn2"))?;
let norm2 = LayerNormNoAffine::new(1e-6);
let mlp_ratio = 4;
let mlp = Mlp::new(hidden_size, hidden_size * mlp_ratio, vb.pp("mlp"))?;
let n_mods = 9;
let ada_ln_modulation = nn::seq().add(nn::Activation::Silu).add(nn::linear(
hidden_size,
n_mods * hidden_size,
vb.pp("adaLN_modulation.1"),
)?);
Ok(Self {
norm1,
attn,
attn2,
norm2,
mlp,
ada_ln_modulation,
})
}
pub fn pre_attention(
&self,
x: &Tensor,
c: &Tensor,
) -> Result<(Qkv, Qkv, SelfAttnModulateIntermediates)> {
let modulation = self.ada_ln_modulation.forward(c)?;
let chunks = modulation.chunk(9, D::Minus1)?;
let (
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
shift_msa2,
scale_msa2,
gate_msa2,
) = (
chunks[0].clone(),
chunks[1].clone(),
chunks[2].clone(),
chunks[3].clone(),
chunks[4].clone(),
chunks[5].clone(),
chunks[6].clone(),
chunks[7].clone(),
chunks[8].clone(),
);
let norm_x = self.norm1.forward(x)?;
let modulated_x = modulate(&norm_x, &shift_msa, &scale_msa)?;
let qkv = self.attn.pre_attention(&modulated_x)?;
let modulated_x2 = modulate(&norm_x, &shift_msa2, &scale_msa2)?;
let qkv2 = self.attn2.pre_attention(&modulated_x2)?;
Ok((
qkv,
qkv2,
SelfAttnModulateIntermediates {
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
gate_msa2,
},
))
}
pub fn post_attention(
&self,
attn: &Tensor,
attn2: &Tensor,
x: &Tensor,
mod_interm: &SelfAttnModulateIntermediates,
) -> Result<Tensor> {
let attn_out = self.attn.post_attention(attn)?;
let x = x.add(&attn_out.broadcast_mul(&mod_interm.gate_msa.unsqueeze(1)?)?)?;
let attn_out2 = self.attn2.post_attention(attn2)?;
let x = x.add(&attn_out2.broadcast_mul(&mod_interm.gate_msa2.unsqueeze(1)?)?)?;
let norm_x = self.norm2.forward(&x)?;
let modulated_x = modulate(&norm_x, &mod_interm.shift_mlp, &mod_interm.scale_mlp)?;
let mlp_out = self.mlp.forward(&modulated_x)?;
let x = x.add(&mlp_out.broadcast_mul(&mod_interm.gate_mlp.unsqueeze(1)?)?)?;
Ok(x)
}
}
pub struct QkvOnlyDiTBlock {
norm1: LayerNormNoAffine,
attn: QkvOnlyAttnProjections,
ada_ln_modulation: nn::Sequential,
}
impl QkvOnlyDiTBlock {
pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
let norm1 = LayerNormNoAffine::new(1e-6);
let attn = QkvOnlyAttnProjections::new(hidden_size, num_heads, vb.pp("attn"))?;
let n_mods = 2;
let ada_ln_modulation = nn::seq().add(nn::Activation::Silu).add(nn::linear(
hidden_size,
n_mods * hidden_size,
vb.pp("adaLN_modulation.1"),
)?);
Ok(Self {
norm1,
attn,
ada_ln_modulation,
})
}
pub fn pre_attention(&self, x: &Tensor, c: &Tensor) -> Result<Qkv> {
let modulation = self.ada_ln_modulation.forward(c)?;
let chunks = modulation.chunk(2, D::Minus1)?;
let (shift_msa, scale_msa) = (chunks[0].clone(), chunks[1].clone());
let norm_x = self.norm1.forward(x)?;
let modulated_x = modulate(&norm_x, &shift_msa, &scale_msa)?;
self.attn.pre_attention(&modulated_x)
}
}
pub struct FinalLayer {
norm_final: LayerNormNoAffine,
linear: nn::Linear,
ada_ln_modulation: nn::Sequential,
}
impl FinalLayer {
pub fn new(
hidden_size: usize,
patch_size: usize,
out_channels: usize,
vb: nn::VarBuilder,
) -> Result<Self> {
let norm_final = LayerNormNoAffine::new(1e-6);
let linear = nn::linear(
hidden_size,
patch_size * patch_size * out_channels,
vb.pp("linear"),
)?;
let ada_ln_modulation = nn::seq().add(nn::Activation::Silu).add(nn::linear(
hidden_size,
2 * hidden_size,
vb.pp("adaLN_modulation.1"),
)?);
Ok(Self {
norm_final,
linear,
ada_ln_modulation,
})
}
pub fn forward(&self, x: &Tensor, c: &Tensor) -> Result<Tensor> {
let modulation = self.ada_ln_modulation.forward(c)?;
let chunks = modulation.chunk(2, D::Minus1)?;
let (shift, scale) = (chunks[0].clone(), chunks[1].clone());
let norm_x = self.norm_final.forward(x)?;
let modulated_x = modulate(&norm_x, &shift, &scale)?;
let output = self.linear.forward(&modulated_x)?;
Ok(output)
}
}
fn modulate(x: &Tensor, shift: &Tensor, scale: &Tensor) -> Result<Tensor> {
let shift = shift.unsqueeze(1)?;
let scale = scale.unsqueeze(1)?;
let scale_plus_one = scale.add(&Tensor::ones_like(&scale)?)?;
shift.broadcast_add(&x.broadcast_mul(&scale_plus_one)?)
}
pub trait JointBlock {
fn forward(&self, context: &Tensor, x: &Tensor, c: &Tensor) -> Result<(Tensor, Tensor)>;
}
pub struct MMDiTJointBlock {
x_block: DiTBlock,
context_block: DiTBlock,
num_heads: usize,
use_flash_attn: bool,
}
impl MMDiTJointBlock {
pub fn new(
hidden_size: usize,
num_heads: usize,
use_flash_attn: bool,
vb: nn::VarBuilder,
) -> Result<Self> {
let x_block = DiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = DiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
Ok(Self {
x_block,
context_block,
num_heads,
use_flash_attn,
})
}
}
impl JointBlock for MMDiTJointBlock {
fn forward(&self, context: &Tensor, x: &Tensor, c: &Tensor) -> Result<(Tensor, Tensor)> {
let (context_qkv, context_interm) = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_interm) = self.x_block.pre_attention(x, c)?;
let (context_attn, x_attn) =
joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let context_out =
self.context_block
.post_attention(&context_attn, context, &context_interm)?;
let x_out = self.x_block.post_attention(&x_attn, x, &x_interm)?;
Ok((context_out, x_out))
}
}
pub struct MMDiTXJointBlock {
x_block: SelfAttnDiTBlock,
context_block: DiTBlock,
num_heads: usize,
use_flash_attn: bool,
}
impl MMDiTXJointBlock {
pub fn new(
hidden_size: usize,
num_heads: usize,
use_flash_attn: bool,
vb: nn::VarBuilder,
) -> Result<Self> {
let x_block = SelfAttnDiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = DiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
Ok(Self {
x_block,
context_block,
num_heads,
use_flash_attn,
})
}
}
impl JointBlock for MMDiTXJointBlock {
fn forward(&self, context: &Tensor, x: &Tensor, c: &Tensor) -> Result<(Tensor, Tensor)> {
let (context_qkv, context_interm) = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_qkv2, x_interm) = self.x_block.pre_attention(x, c)?;
let (context_attn, x_attn) =
joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let x_attn2 = attn(&x_qkv2, self.num_heads, self.use_flash_attn)?;
let context_out =
self.context_block
.post_attention(&context_attn, context, &context_interm)?;
let x_out = self
.x_block
.post_attention(&x_attn, &x_attn2, x, &x_interm)?;
Ok((context_out, x_out))
}
}
pub struct ContextQkvOnlyJointBlock {
x_block: DiTBlock,
context_block: QkvOnlyDiTBlock,
num_heads: usize,
use_flash_attn: bool,
}
impl ContextQkvOnlyJointBlock {
pub fn new(
hidden_size: usize,
num_heads: usize,
use_flash_attn: bool,
vb: nn::VarBuilder,
) -> Result<Self> {
let x_block = DiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = QkvOnlyDiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
Ok(Self {
x_block,
context_block,
num_heads,
use_flash_attn,
})
}
pub fn forward(&self, context: &Tensor, x: &Tensor, c: &Tensor) -> Result<Tensor> {
let context_qkv = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_interm) = self.x_block.pre_attention(x, c)?;
let (_, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let x_out = self.x_block.post_attention(&x_attn, x, &x_interm)?;
Ok(x_out)
}
}
// A QKV-attention that is compatible with the interface of candle_flash_attn::flash_attn
// Flash attention regards q, k, v dimensions as (batch_size, seqlen, nheads, headdim)
fn flash_compatible_attention(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
) -> Result<Tensor> {
let q_dims_for_matmul = q.transpose(1, 2)?.dims().to_vec();
let rank = q_dims_for_matmul.len();
let q = q.transpose(1, 2)?.flatten_to(rank - 3)?;
let k = k.transpose(1, 2)?.flatten_to(rank - 3)?;
let v = v.transpose(1, 2)?.flatten_to(rank - 3)?;
let attn_weights = (q.matmul(&k.t()?)? * softmax_scale as f64)?;
let attn_scores = candle_nn::ops::softmax_last_dim(&attn_weights)?.matmul(&v)?;
attn_scores.reshape(q_dims_for_matmul)?.transpose(1, 2)
}
#[cfg(feature = "flash-attn")]
fn flash_attn(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
}
#[cfg(not(feature = "flash-attn"))]
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
unimplemented!("compile with '--features flash-attn'")
}
fn joint_attn(
context_qkv: &Qkv,
x_qkv: &Qkv,
num_heads: usize,
use_flash_attn: bool,
) -> Result<(Tensor, Tensor)> {
let qkv = Qkv {
q: Tensor::cat(&[&context_qkv.q, &x_qkv.q], 1)?,
k: Tensor::cat(&[&context_qkv.k, &x_qkv.k], 1)?,
v: Tensor::cat(&[&context_qkv.v, &x_qkv.v], 1)?,
};
let seqlen = qkv.q.dim(1)?;
let attn = attn(&qkv, num_heads, use_flash_attn)?;
let context_qkv_seqlen = context_qkv.q.dim(1)?;
let context_attn = attn.narrow(1, 0, context_qkv_seqlen)?;
let x_attn = attn.narrow(1, context_qkv_seqlen, seqlen - context_qkv_seqlen)?;
Ok((context_attn, x_attn))
}
fn attn(qkv: &Qkv, num_heads: usize, use_flash_attn: bool) -> Result<Tensor> {
let batch_size = qkv.q.dim(0)?;
let seqlen = qkv.q.dim(1)?;
let qkv = Qkv {
q: qkv.q.reshape((batch_size, seqlen, num_heads, ()))?,
k: qkv.k.reshape((batch_size, seqlen, num_heads, ()))?,
v: qkv.v.clone(),
};
let headdim = qkv.q.dim(D::Minus1)?;
let softmax_scale = 1.0 / (headdim as f64).sqrt();
let attn = if use_flash_attn {
flash_attn(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32, false)?
} else {
flash_compatible_attention(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32)?
};
attn.reshape((batch_size, seqlen, ()))
}
|