1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
// Implement the MMDiT model originally introduced for Stable Diffusion 3 (https://arxiv.org/abs/2403.03206),
// as well as the MMDiT-X variant introduced for Stable Diffusion 3.5-medium (https://huggingface.co/stabilityai/stable-diffusion-3.5-medium)
// This follows the implementation of the MMDiT model in the ComfyUI repository.
// https://github.com/comfyanonymous/ComfyUI/blob/78e133d0415784924cd2674e2ee48f3eeca8a2aa/comfy/ldm/modules/diffusionmodules/mmdit.py#L1
// with MMDiT-X support following the Stability-AI/sd3.5 repository.
// https://github.com/Stability-AI/sd3.5/blob/4e484e05308d83fb77ae6f680028e6c313f9da54/mmditx.py#L1
use candle::{Module, Result, Tensor, D};
use candle_nn as nn;
use super::blocks::{
ContextQkvOnlyJointBlock, FinalLayer, JointBlock, MMDiTJointBlock, MMDiTXJointBlock,
};
use super::embedding::{
PatchEmbedder, PositionEmbedder, TimestepEmbedder, Unpatchifier, VectorEmbedder,
};
#[derive(Debug, Clone)]
pub struct Config {
pub patch_size: usize,
pub in_channels: usize,
pub out_channels: usize,
pub depth: usize,
pub head_size: usize,
pub adm_in_channels: usize,
pub pos_embed_max_size: usize,
pub context_embed_size: usize,
pub frequency_embedding_size: usize,
}
impl Config {
pub fn sd3_medium() -> Self {
Self {
patch_size: 2,
in_channels: 16,
out_channels: 16,
depth: 24,
head_size: 64,
adm_in_channels: 2048,
pos_embed_max_size: 192,
context_embed_size: 4096,
frequency_embedding_size: 256,
}
}
pub fn sd3_5_medium() -> Self {
Self {
patch_size: 2,
in_channels: 16,
out_channels: 16,
depth: 24,
head_size: 64,
adm_in_channels: 2048,
pos_embed_max_size: 384,
context_embed_size: 4096,
frequency_embedding_size: 256,
}
}
pub fn sd3_5_large() -> Self {
Self {
patch_size: 2,
in_channels: 16,
out_channels: 16,
depth: 38,
head_size: 64,
adm_in_channels: 2048,
pos_embed_max_size: 192,
context_embed_size: 4096,
frequency_embedding_size: 256,
}
}
}
pub struct MMDiT {
core: MMDiTCore,
patch_embedder: PatchEmbedder,
pos_embedder: PositionEmbedder,
timestep_embedder: TimestepEmbedder,
vector_embedder: VectorEmbedder,
context_embedder: nn::Linear,
unpatchifier: Unpatchifier,
}
impl MMDiT {
pub fn new(cfg: &Config, use_flash_attn: bool, vb: nn::VarBuilder) -> Result<Self> {
let hidden_size = cfg.head_size * cfg.depth;
let core = MMDiTCore::new(
cfg.depth,
hidden_size,
cfg.depth,
cfg.patch_size,
cfg.out_channels,
use_flash_attn,
vb.clone(),
)?;
let patch_embedder = PatchEmbedder::new(
cfg.patch_size,
cfg.in_channels,
hidden_size,
vb.pp("x_embedder"),
)?;
let pos_embedder = PositionEmbedder::new(
hidden_size,
cfg.patch_size,
cfg.pos_embed_max_size,
vb.clone(),
)?;
let timestep_embedder = TimestepEmbedder::new(
hidden_size,
cfg.frequency_embedding_size,
vb.pp("t_embedder"),
)?;
let vector_embedder =
VectorEmbedder::new(cfg.adm_in_channels, hidden_size, vb.pp("y_embedder"))?;
let context_embedder = nn::linear(
cfg.context_embed_size,
hidden_size,
vb.pp("context_embedder"),
)?;
let unpatchifier = Unpatchifier::new(cfg.patch_size, cfg.out_channels)?;
Ok(Self {
core,
patch_embedder,
pos_embedder,
timestep_embedder,
vector_embedder,
context_embedder,
unpatchifier,
})
}
pub fn forward(
&self,
x: &Tensor,
t: &Tensor,
y: &Tensor,
context: &Tensor,
skip_layers: Option<&[usize]>,
) -> Result<Tensor> {
// Following the convention of the ComfyUI implementation.
// https://github.com/comfyanonymous/ComfyUI/blob/78e133d0415784924cd2674e2ee48f3eeca8a2aa/comfy/ldm/modules/diffusionmodules/mmdit.py#L919
//
// Forward pass of DiT.
// x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
// t: (N,) tensor of diffusion timesteps
// y: (N,) tensor of class labels
let h = x.dim(D::Minus2)?;
let w = x.dim(D::Minus1)?;
let cropped_pos_embed = self.pos_embedder.get_cropped_pos_embed(h, w)?;
let x = self
.patch_embedder
.forward(x)?
.broadcast_add(&cropped_pos_embed)?;
let c = self.timestep_embedder.forward(t)?;
let y = self.vector_embedder.forward(y)?;
let c = (c + y)?;
let context = self.context_embedder.forward(context)?;
let x = self.core.forward(&context, &x, &c, skip_layers)?;
let x = self.unpatchifier.unpatchify(&x, h, w)?;
x.narrow(2, 0, h)?.narrow(3, 0, w)
}
}
pub struct MMDiTCore {
joint_blocks: Vec<Box<dyn JointBlock>>,
context_qkv_only_joint_block: ContextQkvOnlyJointBlock,
final_layer: FinalLayer,
}
impl MMDiTCore {
pub fn new(
depth: usize,
hidden_size: usize,
num_heads: usize,
patch_size: usize,
out_channels: usize,
use_flash_attn: bool,
vb: nn::VarBuilder,
) -> Result<Self> {
let mut joint_blocks = Vec::with_capacity(depth - 1);
for i in 0..depth - 1 {
let joint_block_vb_pp = format!("joint_blocks.{}", i);
let joint_block: Box<dyn JointBlock> =
if vb.contains_tensor(&format!("{}.x_block.attn2.qkv.weight", joint_block_vb_pp)) {
Box::new(MMDiTXJointBlock::new(
hidden_size,
num_heads,
use_flash_attn,
vb.pp(&joint_block_vb_pp),
)?)
} else {
Box::new(MMDiTJointBlock::new(
hidden_size,
num_heads,
use_flash_attn,
vb.pp(&joint_block_vb_pp),
)?)
};
joint_blocks.push(joint_block);
}
Ok(Self {
joint_blocks,
context_qkv_only_joint_block: ContextQkvOnlyJointBlock::new(
hidden_size,
num_heads,
use_flash_attn,
vb.pp(format!("joint_blocks.{}", depth - 1)),
)?,
final_layer: FinalLayer::new(
hidden_size,
patch_size,
out_channels,
vb.pp("final_layer"),
)?,
})
}
pub fn forward(
&self,
context: &Tensor,
x: &Tensor,
c: &Tensor,
skip_layers: Option<&[usize]>,
) -> Result<Tensor> {
let (mut context, mut x) = (context.clone(), x.clone());
for (i, joint_block) in self.joint_blocks.iter().enumerate() {
if let Some(skip_layers) = &skip_layers {
if skip_layers.contains(&i) {
continue;
}
}
(context, x) = joint_block.forward(&context, &x, c)?;
}
let x = self.context_qkv_only_joint_block.forward(&context, &x, c)?;
self.final_layer.forward(&x, c)
}
}
|