1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
use super::embedding::Model as EmbeddingModel;
use crate::models::{
mistral::Config,
with_tracing::{layer_norm, linear, linear_no_bias, LayerNorm, Linear},
};
use candle::{DType, Device, Result, Tensor, D};
use candle_nn::{ops::softmax_last_dim, LayerNormConfig, Module, VarBuilder};
// Geglu and feedforward from candle-transformers/src/models/stable_diffusion/attention.rs
#[derive(Debug)]
struct GeGlu {
proj: Linear,
span: tracing::Span,
}
impl GeGlu {
fn new(vs: VarBuilder, dim_in: usize, dim_out: usize) -> Result<Self> {
let proj = linear(dim_in, dim_out * 2, vs)?;
let span = tracing::span!(tracing::Level::TRACE, "geglu");
Ok(Self { proj, span })
}
}
impl Module for GeGlu {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let hidden_states_and_gate = self.proj.forward(xs)?.chunk(2, D::Minus1)?;
&hidden_states_and_gate[0] * hidden_states_and_gate[1].gelu()?
}
}
#[derive(Debug)]
struct FeedForward {
project_in: GeGlu,
linear: Linear,
span: tracing::Span,
}
impl FeedForward {
fn new(vs: VarBuilder, dim: usize, dim_out: Option<usize>, mult: usize) -> Result<Self> {
let inner_dim = dim * mult;
let dim_out = dim_out.unwrap_or(dim);
let vs = vs.pp("net");
let project_in = GeGlu::new(vs.pp("0"), dim, inner_dim)?;
let linear = linear(inner_dim, dim_out, vs.pp("2"))?;
let span = tracing::span!(tracing::Level::TRACE, "ff");
Ok(Self {
project_in,
linear,
span,
})
}
}
impl Module for FeedForward {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let xs = self.project_in.forward(xs)?;
self.linear.forward(&xs)
}
}
// CrossAttention from candle-transformers/src/models/stable_diffusion/attention.rs
#[derive(Debug)]
struct CrossAttention {
to_q: Linear,
to_kv: Linear,
to_out: Linear,
heads: usize,
scale: f64,
span: tracing::Span,
span_attn: tracing::Span,
span_softmax: tracing::Span,
}
impl CrossAttention {
fn new(
vs: VarBuilder,
query_dim: usize,
context_dim: Option<usize>,
heads: usize,
dim_head: usize,
) -> Result<Self> {
let inner_dim = dim_head * heads;
let context_dim = context_dim.unwrap_or(query_dim);
let scale = 1.0 / f64::sqrt(dim_head as f64);
let to_q = linear_no_bias(query_dim, inner_dim, vs.pp("to_q"))?;
let to_kv = linear_no_bias(context_dim, inner_dim * 2, vs.pp("to_kv"))?;
let to_out = linear_no_bias(inner_dim, query_dim, vs.pp("to_out"))?;
let span = tracing::span!(tracing::Level::TRACE, "xa");
let span_attn = tracing::span!(tracing::Level::TRACE, "xa-attn");
let span_softmax = tracing::span!(tracing::Level::TRACE, "xa-softmax");
Ok(Self {
to_q,
to_kv,
to_out,
heads,
scale,
span,
span_attn,
span_softmax,
})
}
fn reshape_heads_to_batch_dim(&self, xs: &Tensor) -> Result<Tensor> {
let (batch_size, seq_len, dim) = xs.dims3()?;
xs.reshape((batch_size, seq_len, self.heads, dim / self.heads))?
.transpose(1, 2)?
.reshape((batch_size * self.heads, seq_len, dim / self.heads))
}
fn reshape_batch_dim_to_heads(&self, xs: &Tensor) -> Result<Tensor> {
let (batch_size, seq_len, dim) = xs.dims3()?;
xs.reshape((batch_size / self.heads, self.heads, seq_len, dim))?
.transpose(1, 2)?
.reshape((batch_size / self.heads, seq_len, dim * self.heads))
}
fn attention(&self, query: &Tensor, key: &Tensor, value: &Tensor) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let in_dtype = query.dtype();
let query = query.to_dtype(DType::F32)?;
let key = key.to_dtype(DType::F32)?;
let value = value.to_dtype(DType::F32)?;
let xs = query.matmul(&(key.t()? * self.scale)?)?;
let xs = {
let _enter = self.span_softmax.enter();
softmax_last_dim(&xs)?
};
let xs = xs.matmul(&value)?.to_dtype(in_dtype)?;
self.reshape_batch_dim_to_heads(&xs)
}
fn forward(&self, xs: &Tensor, context: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let query = self.to_q.forward(xs)?;
let context = context.unwrap_or(xs).contiguous()?;
let kv_chunks = self
.to_kv
.forward(&context)?
.chunk(2, context.shape().dims().len() - 1)?;
let (key, value) = (kv_chunks[0].clone(), kv_chunks[1].clone());
let query = self.reshape_heads_to_batch_dim(&query)?;
let key = self.reshape_heads_to_batch_dim(&key)?;
let value = self.reshape_heads_to_batch_dim(&value)?;
let xs = self.attention(&query, &key, &value)?;
self.to_out.forward(&xs)
}
}
#[derive(Debug)]
pub struct Model {
embedding_model: EmbeddingModel,
cross_attn: CrossAttention,
cross_attn_norm: LayerNorm,
cross_attn_context_norm: LayerNorm,
ff: FeedForward,
ff_norm: LayerNorm,
latents: Tensor,
pub device: Device,
pub dtype: DType,
}
impl Model {
pub fn new(vb: VarBuilder) -> Result<Self> {
// Embedding model
let cfg = Config::config_7b_v0_1(false);
let embedding_model = EmbeddingModel::new(&cfg, vb.pp("embedding_model"))?;
// Latent attention
let dim = 4096;
let vb = vb.pp("latent_attention_model");
let latents = vb.get((512, dim), "latents")?;
// Cross attend blocks
let vb = vb.pp("cross_attend_blocks");
let cross_attn_norm = layer_norm(dim, LayerNormConfig::default(), vb.pp("0.norm"))?;
let cross_attn_context_norm = layer_norm(
dim,
candle_nn::LayerNormConfig::default(),
vb.pp("0.norm_context"),
)?;
let cross_attn = CrossAttention::new(vb.pp("0.fn"), dim, None, 8, 4096)?;
let ff_norm = layer_norm(dim, LayerNormConfig::default(), vb.pp("1.norm"))?;
let ff = FeedForward::new(vb.pp("1.fn"), dim, None, 4)?;
Ok(Self {
embedding_model,
cross_attn,
cross_attn_norm,
cross_attn_context_norm,
ff,
ff_norm,
latents,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
pub fn forward(
&mut self,
input_ids: &Tensor,
attn_mask: &Tensor,
pool_mask: &Tensor,
) -> Result<Tensor> {
// Embedding model
let hiddens = self
.embedding_model
.forward(attn_mask, input_ids, self.dtype)?;
// Latent attention
let b = hiddens.dims()[0];
let x = self.latents.unsqueeze(0)?.repeat((b, 1, 1))?;
let original_hiddens = &hiddens;
let hiddens = self.cross_attn_norm.forward(original_hiddens)?;
let x = self.cross_attn_context_norm.forward(&x)?;
let cross_hiddens = (self.cross_attn.forward(&hiddens, Some(&x))? + original_hiddens)?;
let hiddens = self.ff_norm.forward(&cross_hiddens)?;
let hiddens = (self.ff.forward(&hiddens)? + cross_hiddens)?;
// Mean pooling
let hiddens_masked = hiddens.broadcast_mul(&pool_mask.unsqueeze(D::Minus1)?)?;
let s = hiddens_masked.sum(1)?;
let d = pool_mask.sum_keepdim(1)?;
s.broadcast_div(&d)
}
}
|