1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
//! Parler Model implementation for parler_tts text-to-speech synthesis
//!
//! Implements a transformer-based decoder architecture for generating audio tokens
//! from text using discrete tokens. The model converts text into audio segments
//! using multiple codebooks of quantized audio tokens.
//!
//! The model architecture includes:
//! - Multi-head attention layers for text and audio processing
//! - Feed-forward networks
//! - Layer normalization
//! - Positional embeddings
//! - Multiple codebook prediction heads
//!
//! The implementation follows the original parler_tts architecture while focusing
//! on audio token generation for text-to-speech synthesis.
//!
use crate::generation::LogitsProcessor;
use crate::models::t5;
use candle::{IndexOp, Result, Tensor};
use candle_nn::{layer_norm, linear_b as linear, Activation, LayerNorm, Linear, VarBuilder};
#[derive(serde::Deserialize, Debug, Clone)]
pub struct DecoderConfig {
pub vocab_size: usize,
pub max_position_embeddings: usize,
pub num_hidden_layers: usize,
pub ffn_dim: usize,
pub num_attention_heads: usize,
pub num_key_value_heads: Option<usize>,
pub num_cross_attention_key_value_heads: Option<usize>,
pub activation_function: Activation,
pub hidden_size: usize,
pub scale_embedding: bool,
pub num_codebooks: usize,
pub pad_token_id: usize,
pub bos_token_id: usize,
pub eos_token_id: usize,
pub tie_word_embeddings: bool,
pub rope_embeddings: bool,
pub rope_theta: f64,
}
#[derive(serde::Deserialize, Debug, Clone)]
pub struct Config {
pub decoder_start_token_id: u32,
pub pad_token_id: u32,
pub decoder: DecoderConfig,
pub text_encoder: t5::Config,
pub vocab_size: usize,
pub audio_encoder: crate::models::dac::Config,
}
#[derive(Debug, Clone)]
pub struct Attention {
k_proj: Linear,
v_proj: Linear,
q_proj: Linear,
out_proj: Linear,
is_causal: bool,
kv_cache: Option<(Tensor, Tensor)>,
scaling: f64,
num_heads: usize,
num_kv_heads: usize,
num_kv_groups: usize,
head_dim: usize,
}
impl Attention {
fn new(
num_kv_heads: usize,
is_causal: bool,
cfg: &DecoderConfig,
vb: VarBuilder,
) -> Result<Self> {
if cfg.rope_embeddings {
candle::bail!("rope embeddings are not supported");
}
let embed_dim = cfg.hidden_size;
let head_dim = embed_dim / cfg.num_attention_heads;
let kv_out_dim = num_kv_heads * head_dim;
let k_proj = linear(embed_dim, kv_out_dim, false, vb.pp("k_proj"))?;
let v_proj = linear(embed_dim, kv_out_dim, false, vb.pp("v_proj"))?;
let q_proj = linear(embed_dim, embed_dim, false, vb.pp("q_proj"))?;
let out_proj = linear(embed_dim, embed_dim, false, vb.pp("out_proj"))?;
Ok(Self {
k_proj,
v_proj,
q_proj,
out_proj,
is_causal,
kv_cache: None,
scaling: (head_dim as f64).powf(-0.5),
num_heads: cfg.num_attention_heads,
num_kv_heads,
num_kv_groups: cfg.num_attention_heads / num_kv_heads,
head_dim,
})
}
fn forward(
&mut self,
xs: &Tensor,
key_value_states: Option<&Tensor>,
attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let (b_sz, tgt_len, _) = xs.dims3()?;
let query_states = (xs.apply(&self.q_proj)? * self.scaling)?
.reshape((b_sz, tgt_len, self.num_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let key_states = match key_value_states {
Some(states) => states.apply(&self.k_proj)?,
None => xs.apply(&self.k_proj)?,
};
let key_states = key_states
.reshape((b_sz, (), self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let value_states = match key_value_states {
Some(states) => states.apply(&self.v_proj)?,
None => xs.apply(&self.v_proj)?,
};
let value_states = value_states
.reshape((b_sz, (), self.num_kv_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let (key_states, value_states) = match &self.kv_cache {
None => (key_states, value_states),
Some((prev_k, prev_v)) => {
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
(key_states, value_states)
}
};
if self.is_causal {
self.kv_cache = Some((key_states.clone(), value_states.clone()));
}
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
let value_states =
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
let attn_weights = query_states.matmul(&key_states.transpose(2, 3)?)?;
let attn_weights = match attention_mask {
None => attn_weights,
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights.matmul(&value_states)?;
attn_output
.transpose(1, 2)?
.reshape((b_sz, tgt_len, ()))?
.apply(&self.out_proj)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
pub struct DecoderLayer {
self_attn: Attention,
self_attn_layer_norm: LayerNorm,
encoder_attn: Attention,
encoder_attn_layer_norm: LayerNorm,
fc1: Linear,
fc2: Linear,
final_layer_norm: LayerNorm,
activation: Activation,
}
impl DecoderLayer {
fn new(cfg: &DecoderConfig, vb: VarBuilder) -> Result<Self> {
let kv_heads = cfg.num_key_value_heads.unwrap_or(cfg.num_attention_heads);
let kv_heads_cross = cfg.num_cross_attention_key_value_heads.unwrap_or(kv_heads);
let self_attn = Attention::new(kv_heads, true, cfg, vb.pp("self_attn"))?;
let encoder_attn = Attention::new(kv_heads_cross, false, cfg, vb.pp("encoder_attn"))?;
let self_attn_layer_norm =
layer_norm(cfg.hidden_size, 1e-5, vb.pp("self_attn_layer_norm"))?;
let encoder_attn_layer_norm =
layer_norm(cfg.hidden_size, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
let fc1 = linear(cfg.hidden_size, cfg.ffn_dim, false, vb.pp("fc1"))?;
let fc2 = linear(cfg.ffn_dim, cfg.hidden_size, false, vb.pp("fc2"))?;
let final_layer_norm = layer_norm(cfg.hidden_size, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self {
self_attn,
self_attn_layer_norm,
encoder_attn,
encoder_attn_layer_norm,
fc1,
fc2,
final_layer_norm,
activation: cfg.activation_function,
})
}
fn forward(
&mut self,
xs: &Tensor,
attention_mask: Option<&Tensor>,
encoder_xs: &Tensor,
encoder_attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
// Self attention
let residual = xs;
let xs = xs.apply(&self.self_attn_layer_norm)?;
let xs = self.self_attn.forward(&xs, None, attention_mask)?;
let xs = (residual + xs)?;
// Cross attention
let residual = &xs;
let xs = xs.apply(&self.encoder_attn_layer_norm)?;
let xs = self
.encoder_attn
.forward(&xs, Some(encoder_xs), encoder_attention_mask)?;
let xs = (residual + xs)?;
// Fully connected
let residual = &xs;
let xs = xs
.apply(&self.final_layer_norm)?
.apply(&self.fc1)?
.apply(&self.activation)?
.apply(&self.fc2)?;
residual + xs
}
fn clear_kv_cache(&mut self) {
self.self_attn.clear_kv_cache();
self.encoder_attn.clear_kv_cache();
}
}
#[derive(Debug, Clone)]
pub struct Decoder {
embed_tokens: Vec<candle_nn::Embedding>,
embed_positions: Tensor,
layers: Vec<DecoderLayer>,
layer_norm: LayerNorm,
num_codebooks: usize,
hidden_size: usize,
lm_heads: Vec<Linear>,
dtype: candle::DType,
}
impl Decoder {
pub fn new(cfg: &DecoderConfig, vb: VarBuilder) -> Result<Self> {
let vb_d = vb.pp("model.decoder");
let mut embed_tokens = Vec::with_capacity(cfg.num_codebooks);
let vb_e = vb_d.pp("embed_tokens");
for embed_idx in 0..cfg.num_codebooks {
let e = candle_nn::embedding(cfg.vocab_size + 1, cfg.hidden_size, vb_e.pp(embed_idx))?;
embed_tokens.push(e)
}
let embed_positions = vb_d.get(
(cfg.max_position_embeddings, cfg.hidden_size),
"embed_positions.weights",
)?;
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb_l = vb_d.pp("layers");
for layer_idx in 0..cfg.num_hidden_layers {
let layer = DecoderLayer::new(cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let layer_norm = layer_norm(cfg.hidden_size, 1e-5, vb_d.pp("layer_norm"))?;
let mut lm_heads = Vec::with_capacity(cfg.num_codebooks);
let vb_l = vb.pp("lm_heads");
for lm_idx in 0..cfg.num_codebooks {
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb_l.pp(lm_idx))?;
lm_heads.push(lm_head)
}
Ok(Self {
embed_tokens,
embed_positions,
layers,
layer_norm,
num_codebooks: cfg.num_codebooks,
lm_heads,
hidden_size: cfg.hidden_size,
dtype: vb.dtype(),
})
}
pub fn forward(
&mut self,
input_ids: &Tensor,
prompt_hidden_states: Option<&Tensor>,
attention_mask: Option<&Tensor>,
encoder_xs: &Tensor,
encoder_attention_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Vec<Tensor>> {
let (b_sz, num_codebooks, seq_len) = input_ids.dims3()?;
if num_codebooks != self.num_codebooks {
candle::bail!("unexpected num codebooks in input {:?}", input_ids.shape())
}
let mut inputs_embeds = Tensor::zeros(
(b_sz, seq_len, self.hidden_size),
self.dtype,
input_ids.device(),
)?;
for (idx, embs) in self.embed_tokens.iter().enumerate() {
let e = input_ids.i((.., idx))?.apply(embs)?;
inputs_embeds = (inputs_embeds + e)?
}
let inputs_embeds = match prompt_hidden_states {
None => inputs_embeds,
Some(pis) => Tensor::cat(&[pis, &inputs_embeds], 1)?,
};
let embed_positions = self
.embed_positions
.i(seqlen_offset..seqlen_offset + inputs_embeds.dim(1)?)?;
let mut xs = (inputs_embeds + embed_positions.unsqueeze(0))?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attention_mask, encoder_xs, encoder_attention_mask)?;
}
let xs = xs.apply(&self.layer_norm)?;
let mut lm_logits = Vec::with_capacity(self.num_codebooks);
for lm_head in self.lm_heads.iter() {
let logits = xs.apply(lm_head)?;
lm_logits.push(logits)
}
Ok(lm_logits)
}
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
}
}
}
#[derive(Debug, Clone)]
pub struct Model {
pub embed_prompts: candle_nn::Embedding,
pub enc_to_dec_proj: Option<Linear>,
pub decoder: Decoder,
pub text_encoder: t5::T5EncoderModel,
pub decoder_start_token_id: u32,
pub pad_token_id: u32,
pub audio_encoder: crate::models::dac::Model,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let text_encoder = t5::T5EncoderModel::load(vb.pp("text_encoder"), &cfg.text_encoder)?;
let decoder = Decoder::new(&cfg.decoder, vb.pp("decoder"))?;
let embed_prompts = candle_nn::embedding(
cfg.vocab_size,
cfg.decoder.hidden_size,
vb.pp("embed_prompts"),
)?;
let enc_to_dec_proj = if cfg.text_encoder.d_model != cfg.decoder.hidden_size {
let proj = linear(
cfg.text_encoder.d_model,
cfg.decoder.hidden_size,
true,
vb.pp("enc_to_dec_proj"),
)?;
Some(proj)
} else {
None
};
let audio_encoder =
crate::models::dac::Model::new(&cfg.audio_encoder, vb.pp("audio_encoder"))?;
Ok(Self {
decoder,
text_encoder,
embed_prompts,
enc_to_dec_proj,
decoder_start_token_id: cfg.decoder_start_token_id,
pad_token_id: cfg.pad_token_id,
audio_encoder,
})
}
/// Note that the returned tensor uses the CPU device.
pub fn generate(
&mut self,
prompt_tokens: &Tensor,
description_tokens: &Tensor,
mut lp: LogitsProcessor,
max_steps: usize,
) -> Result<Tensor> {
self.decoder.clear_kv_cache();
self.text_encoder.clear_kv_cache();
let encoded = self.text_encoder.forward(description_tokens)?;
let encoded = match self.enc_to_dec_proj.as_ref() {
None => encoded,
Some(proj) => encoded.apply(proj)?,
};
let prompt_hidden_states = prompt_tokens.apply(&self.embed_prompts)?;
let num_codebooks = self.decoder.num_codebooks;
let mut audio_tokens = vec![self.decoder_start_token_id; num_codebooks];
let mut all_audio_tokens = vec![vec![]; num_codebooks];
let prompt_len = prompt_hidden_states.dim(1)?;
for step in 0..max_steps {
let input_ids = Tensor::from_slice(
audio_tokens.as_slice(),
(1, num_codebooks, 1),
prompt_tokens.device(),
)?;
let (prompt_hidden_states, pos) = if step == 0 {
(Some(&prompt_hidden_states), 0)
} else {
(None, step + prompt_len)
};
let causal_mask = if pos == 0 {
self.prepare_causal_mask(prompt_len + 1, prompt_len + 1, input_ids.device())?
} else {
self.prepare_causal_mask(1, pos + 1, input_ids.device())?
};
let logits = self.decoder.forward(
&input_ids,
prompt_hidden_states,
Some(&causal_mask),
&encoded,
None,
pos,
)?;
for (logit_idx, logit) in logits.iter().enumerate() {
if logit_idx > step {
break;
}
if audio_tokens[logit_idx] != self.pad_token_id {
let logit = logit.i((0, logit.dim(1)? - 1))?;
let token = lp.sample(&logit)?;
audio_tokens[logit_idx] = token
}
}
if audio_tokens.iter().all(|v| v == &self.pad_token_id) {
break;
}
for (cb_idx, &token) in audio_tokens.iter().enumerate() {
if token != self.decoder_start_token_id && token != self.pad_token_id {
all_audio_tokens[cb_idx].push(token)
}
}
}
let min_len = all_audio_tokens.iter().map(|v| v.len()).min().unwrap_or(0);
all_audio_tokens.iter_mut().for_each(|v| {
v.resize(min_len, 0);
});
let all_audio_tokens = Tensor::new(all_audio_tokens, &candle::Device::Cpu)?;
Ok(all_audio_tokens)
}
fn prepare_causal_mask(
&self,
q_len: usize,
kv_len: usize,
device: &candle::Device,
) -> Result<Tensor> {
let mask: Vec<_> = (0..q_len)
.flat_map(|i| {
(0..kv_len).map(move |j| {
if i + kv_len < j + q_len {
f32::NEG_INFINITY
} else {
0.
}
})
})
.collect();
Tensor::from_slice(&mask, (q_len, kv_len), device)
}
}
|