summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/quantized_llama.rs
blob: 44d89f40afd5bc2aa70b53d847d42e5538da4b19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
use std::collections::HashMap;

use candle::quantized::QTensor;
use candle::quantized::{ggml_file, gguf_file};
use candle::{DType, Device, IndexOp, Result, Tensor, D};
use candle_nn::{Embedding, Module};

pub const MAX_SEQ_LEN: usize = 4096;

#[derive(Debug, Clone)]
struct RmsNorm {
    inner: candle_nn::LayerNorm,
    span: tracing::Span,
}

impl RmsNorm {
    fn new(scale: QTensor, eps: f32) -> Result<Self> {
        let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
        let scale = scale.dequantize(&Device::Cpu)?;
        let inner = candle_nn::LayerNorm::rms_norm(scale, eps as f64);
        Ok(Self { inner, span })
    }

    fn forward(&self, x: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        self.inner.forward(x)
    }
}

// QMatMul wrapper adding some tracing.
#[derive(Debug, Clone)]
struct QMatMul {
    inner: candle::quantized::QMatMul,
    span: tracing::Span,
}

impl QMatMul {
    fn from_qtensor(qtensor: QTensor) -> Result<Self> {
        let inner = candle::quantized::QMatMul::from_qtensor(qtensor)?;
        let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
        Ok(Self { inner, span })
    }

    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        self.inner.forward(xs)
    }
}

#[derive(Debug, Clone)]
struct LayerWeights {
    attention_wq: QMatMul,
    attention_wk: QMatMul,
    attention_wv: QMatMul,
    attention_wo: QMatMul,
    attention_norm: RmsNorm,
    feed_forward_w1: QMatMul,
    feed_forward_w2: QMatMul,
    feed_forward_w3: QMatMul,
    ffn_norm: RmsNorm,
    n_head: usize,
    n_kv_head: usize,
    head_dim: usize,
    cos: Tensor,
    sin: Tensor,
    kv_cache: Option<(Tensor, Tensor)>,
    span_attn: tracing::Span,
    span_rot: tracing::Span,
    span_mlp: tracing::Span,
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
    let shape = mask.shape();
    let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
    let m = mask.where_cond(&on_true, on_false)?;
    Ok(m)
}

impl LayerWeights {
    fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
        let _enter = self.span_rot.enter();
        let (b_sz, n_head, seq_len, n_embd) = x.dims4()?;
        let cos = self
            .cos
            .narrow(0, index_pos, seq_len)?
            .reshape((seq_len, n_embd / 2, 1))?;
        let sin = self
            .sin
            .narrow(0, index_pos, seq_len)?
            .reshape((seq_len, n_embd / 2, 1))?;
        let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
        let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
        // This mimics the llama.cpp behavior.
        // https://github.com/ggerganov/llama.cpp/blob/1f0bccb27929e261744c979bc75114955da49e98/ggml.c#L12104-L12105
        // The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension.
        // The resulting y0 and y1 are also interleaved with:
        //   y0 = x0*cos - x1*sin
        //   y1 = x0*sin + x1*cos
        let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?;
        let x0 = x.narrow(D::Minus1, 0, 1)?;
        let x1 = x.narrow(D::Minus1, 1, 1)?;
        let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
        let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
        let rope = Tensor::cat(&[y0, y1], D::Minus1)?;
        let rope = rope.flatten_from(D::Minus2)?;
        Ok(rope)
    }

    fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> {
        let _enter = self.span_attn.enter();
        let (b_sz, seq_len, n_embd) = x.dims3()?;
        let q = self.attention_wq.forward(x)?;
        let k = self.attention_wk.forward(x)?;
        let v = self.attention_wv.forward(x)?;

        let q = q
            .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
            .transpose(1, 2)?;
        let k = k
            .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
            .transpose(1, 2)?;
        let v = v
            .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
            .transpose(1, 2)?;

        let q = self.apply_rotary_emb(&q, index_pos)?;
        let k = self.apply_rotary_emb(&k, index_pos)?;

        let (k, v) = match &self.kv_cache {
            None => (k, v),
            Some((k_cache, v_cache)) => {
                if index_pos == 0 {
                    (k, v)
                } else {
                    let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?;
                    let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?;
                    (k, v)
                }
            }
        };
        self.kv_cache = Some((k.clone(), v.clone()));

        // Support for MQA, useful for 70B models.
        let k = self.repeat_kv(k)?;
        let v = self.repeat_kv(v)?;

        let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
        let mask = mask.broadcast_as(att.shape())?;
        let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
        let att = candle_nn::ops::softmax_last_dim(&att)?;
        // Convert to contiguous as matmul doesn't support strided vs for now.
        let y = att.matmul(&v.contiguous()?)?;
        let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
        let y = self.attention_wo.forward(&y)?;
        Ok(y)
    }

    fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
        let n_rep = self.n_head / self.n_kv_head;
        if n_rep == 1 {
            Ok(x)
        } else {
            let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
            let x = x
                .unsqueeze(2)?
                .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
                .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
            Ok(x)
        }
    }
}

#[derive(Debug, Clone)]
pub struct ModelWeights {
    tok_embeddings: Embedding,
    layers: Vec<LayerWeights>,
    norm: RmsNorm,
    output: QMatMul,
    masks: HashMap<usize, Tensor>,
    span: tracing::Span,
    span_output: tracing::Span,
}

fn precomput_freqs_cis(head_dim: usize, freq_base: f32) -> Result<(Tensor, Tensor)> {
    let theta: Vec<_> = (0..head_dim)
        .step_by(2)
        .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
        .collect();
    let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?;
    let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)?
        .to_dtype(DType::F32)?
        .reshape((MAX_SEQ_LEN, 1))?
        .matmul(&theta.reshape((1, theta.elem_count()))?)?;
    let cos = idx_theta.cos()?;
    let sin = idx_theta.sin()?;
    Ok((cos, sin))
}

impl ModelWeights {
    pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> {
        let cpu = &Device::Cpu;
        let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
        let (cos, sin) = precomput_freqs_cis(head_dim, 10000.)?;
        let tok_embeddings = ct.remove("tok_embeddings.weight")?;
        let tok_embeddings = tok_embeddings.dequantize(cpu)?;
        let norm = RmsNorm::new(ct.remove("norm.weight")?, 1e-5)?;
        let output = ct.remove("output.weight")?;
        let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
        for layer_idx in 0..ct.hparams.n_layer {
            let prefix = format!("layers.{layer_idx}");
            let attention_wq = ct.remove(&format!("{prefix}.attention.wq.weight"))?;
            let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
            let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
            let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
            let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
            let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
            let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
            let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?;
            let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?;
            let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
            let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
            let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
            layers.push(LayerWeights {
                attention_wq: QMatMul::from_qtensor(attention_wq)?,
                attention_wk: QMatMul::from_qtensor(attention_wk)?,
                attention_wv: QMatMul::from_qtensor(attention_wv)?,
                attention_wo: QMatMul::from_qtensor(attention_wo)?,
                attention_norm: RmsNorm::new(attention_norm, 1e-5)?,
                feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
                feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
                feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
                ffn_norm: RmsNorm::new(ffn_norm, 1e-5)?,
                n_head: ct.hparams.n_head as usize,
                n_kv_head: ct.hparams.n_head as usize / gqa,
                head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
                cos: cos.clone(),
                sin: sin.clone(),
                kv_cache: None,
                span_attn,
                span_rot,
                span_mlp,
            })
        }
        let span = tracing::span!(tracing::Level::TRACE, "model");
        let span_output = tracing::span!(tracing::Level::TRACE, "output");
        Ok(Self {
            tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize),
            layers,
            norm,
            output: QMatMul::from_qtensor(output)?,
            masks: HashMap::new(),
            span,
            span_output,
        })
    }

    pub fn from_gguf<R: std::io::Seek + std::io::Read>(
        ct: gguf_file::Content,
        reader: &mut R,
    ) -> Result<Self> {
        let cpu = &Device::Cpu;
        let md_get = |s: &str| match ct.metadata.get(s) {
            None => candle::bail!("cannot find {s} in metadata"),
            Some(v) => Ok(v),
        };

        // Parameter extraction from metadata.
        let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
        let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
        let block_count = md_get("llama.block_count")?.to_u32()? as usize;
        let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
        let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
        // Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
        let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()?;

        let rope_freq_base = md_get("llama.rope.freq_base")
            .and_then(|m| m.to_f32())
            .unwrap_or(10000f32);
        let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base)?;

        let tok_embeddings = ct.tensor(reader, "token_embd.weight")?;
        let tok_embeddings = tok_embeddings.dequantize(cpu)?;
        let norm = RmsNorm::new(ct.tensor(reader, "output_norm.weight")?, rms_norm_eps)?;
        let output = ct.tensor(reader, "output.weight")?;
        let mut layers = Vec::with_capacity(block_count);
        for layer_idx in 0..block_count {
            let prefix = format!("blk.{layer_idx}");
            let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"))?;
            let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"))?;
            let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"))?;
            let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"))?;
            let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"))?;
            let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"))?;
            let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"))?;
            let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"))?;
            let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"))?;
            let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
            let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
            let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
            layers.push(LayerWeights {
                attention_wq: QMatMul::from_qtensor(attention_wq)?,
                attention_wk: QMatMul::from_qtensor(attention_wk)?,
                attention_wv: QMatMul::from_qtensor(attention_wv)?,
                attention_wo: QMatMul::from_qtensor(attention_wo)?,
                attention_norm: RmsNorm::new(attention_norm, rms_norm_eps)?,
                feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1)?,
                feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2)?,
                feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3)?,
                ffn_norm: RmsNorm::new(ffn_norm, rms_norm_eps)?,
                n_head: head_count,
                n_kv_head: head_count_kv,
                head_dim: embedding_length / head_count,
                cos: cos.clone(),
                sin: sin.clone(),
                kv_cache: None,
                span_attn,
                span_rot,
                span_mlp,
            })
        }
        let span = tracing::span!(tracing::Level::TRACE, "model");
        let span_output = tracing::span!(tracing::Level::TRACE, "output");
        Ok(Self {
            tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
            layers,
            norm,
            output: QMatMul::from_qtensor(output)?,
            masks: HashMap::new(),
            span,
            span_output,
        })
    }

    fn mask(&mut self, t: usize) -> Result<Tensor> {
        if let Some(mask) = self.masks.get(&t) {
            Ok(mask.clone())
        } else {
            let mask: Vec<_> = (0..t)
                .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
                .collect();
            let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
            self.masks.insert(t, mask.clone());
            Ok(mask)
        }
    }

    pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
        let (_b_sz, seq_len) = x.dims2()?;
        let mask = self.mask(seq_len)?;
        let _enter = self.span.enter();
        let mut layer_in = self.tok_embeddings.forward(x)?;
        for layer in self.layers.iter_mut() {
            let x = layer_in;
            let residual = &x;
            let x = layer.attention_norm.forward(&x)?;
            let attn = layer.forward_attn(&x, &mask, index_pos)?;
            let x = (attn + residual)?;

            // MLP
            let _enter = layer.span_mlp.enter();
            let residual = &x;
            let x = layer.ffn_norm.forward(&x)?;
            let w1 = layer.feed_forward_w1.forward(&x)?;
            let w3 = layer.feed_forward_w3.forward(&x)?;
            let mlp = layer
                .feed_forward_w2
                .forward(&(candle_nn::ops::silu(&w1)? * w3)?)?;
            layer_in = (mlp + residual)?;
        }
        let x = self.norm.forward(&layer_in)?;
        let x = x.i((.., seq_len - 1, ..))?;
        let _enter = self.span_output.enter();
        self.output.forward(&x)
    }
}