summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/quantized_phi3.rs
blob: 1ceb48d13a1073b47fa81c2fd9e69de7153ebd87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//! Phi3 model implementation with quantization support.
//!
//! Phi3 is a language model intended for research purposes.
//! This implementation provides quantization for reduced memory usage.
//!
//! Key characteristics:
//! - Multi-head attention
//! - RMSNorm for layer normalization
//! - Rotary positional embeddings (RoPE)
//! - Support for quantization
//!
//! References:
//! - [Model Card](https://huggingface.co/microsoft/phi-3)
//!

use std::collections::HashMap;

use candle::quantized::gguf_file;
use candle::quantized::QTensor;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{kv_cache::KvCache, Embedding, RmsNorm};

#[derive(Debug, Clone)]
struct QLinear {
    inner: candle::quantized::QMatMul,
    span: tracing::Span,
}

impl QLinear {
    fn new<R: std::io::Read + std::io::Seek>(
        ct: &gguf_file::Content,
        r: &mut R,
        name: &str,
        device: &Device,
    ) -> Result<Self> {
        let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
        let w = ct.tensor(r, &format!("{name}.weight"), device)?;
        let inner = candle::quantized::QMatMul::from_qtensor(w)?;
        Ok(Self { inner, span })
    }
}

impl Module for QLinear {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let _enter = self.span.enter();
        self.inner.forward(xs)
    }
}

#[derive(Debug, Clone)]
struct Mlp {
    ffn_up: QLinear,
    ffn_down: QLinear,
    i_size: usize,
}

impl Module for Mlp {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let up_states = xs.apply(&self.ffn_up)?;
        let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
        let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
        let up_states = (up_states * gate.silu()?)?;
        up_states.apply(&self.ffn_down)
    }
}

fn rms_norm(w: QTensor, eps: f64) -> Result<RmsNorm> {
    let w = w.dequantize(&w.device())?;
    let rms = RmsNorm::new(w, eps);
    Ok(rms)
}

#[derive(Debug, Clone)]
struct LayerWeights {
    attn_qkv: QLinear,
    attn_output: QLinear,
    attn_norm: RmsNorm,
    ffn_norm: RmsNorm,
    mlp: Mlp,
    n_head: usize,
    n_kv_head: usize,
    head_dim: usize,
    cos: Tensor,
    sin: Tensor,
    neg_inf: Tensor,
    kv_cache: KvCache,
    use_flash_attn: bool,
    span_attn: tracing::Span,
    span_rot: tracing::Span,
}

fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: &Tensor) -> Result<Tensor> {
    let shape = mask.shape();
    let m = mask.where_cond(&on_true.broadcast_as(shape.dims())?, on_false)?;
    Ok(m)
}

impl LayerWeights {
    fn apply_rotary_emb(&self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
        let _enter = self.span_rot.enter();
        let (_b_sz, _h, seq_len, _n_embd) = xs.dims4()?;
        let cos = self.cos.narrow(0, index_pos, seq_len)?;
        let sin = self.sin.narrow(0, index_pos, seq_len)?;
        candle_nn::rotary_emb::rope(&xs.contiguous()?, &cos, &sin)
    }

    fn forward_attn(
        &mut self,
        x: &Tensor,
        mask: Option<&Tensor>,
        index_pos: usize,
    ) -> Result<Tensor> {
        let _enter = self.span_attn.enter();
        let (b_sz, seq_len, n_embd) = x.dims3()?;
        let qkv = self.attn_qkv.forward(x)?;

        let query_pos = self.n_head * self.head_dim;
        let q = qkv.narrow(D::Minus1, 0, query_pos)?;
        let k = qkv.narrow(D::Minus1, query_pos, self.n_kv_head * self.head_dim)?;
        let v = qkv.narrow(
            D::Minus1,
            query_pos + self.n_kv_head * self.head_dim,
            self.n_kv_head * self.head_dim,
        )?;

        let q = q
            .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
            .transpose(1, 2)?;
        let k = k
            .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
            .transpose(1, 2)?;
        let v = v
            .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
            .transpose(1, 2)?;

        let q = self.apply_rotary_emb(&q, index_pos)?.contiguous()?;
        let k = self.apply_rotary_emb(&k, index_pos)?;

        let (k, v) = self.kv_cache.append(&k.contiguous()?, &v.contiguous()?)?;

        let k = crate::utils::repeat_kv(k, self.n_head / self.n_kv_head)?;
        let v = crate::utils::repeat_kv(v, self.n_head / self.n_kv_head)?;

        let y = if self.use_flash_attn {
            // flash-attn expects (b_sz, seq_len, nheads, head_dim)
            let q = q.to_dtype(DType::BF16)?.transpose(1, 2)?;
            let k = k.to_dtype(DType::BF16)?.transpose(1, 2)?;
            let v = v.to_dtype(DType::BF16)?.transpose(1, 2)?;
            let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
            flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?
                .to_dtype(DType::F32)?
                .transpose(1, 2)?
        } else {
            let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
            let att = match mask {
                None => att,
                Some(mask) => {
                    let mask = mask.broadcast_as(att.shape())?;
                    masked_fill(&att, &mask, &self.neg_inf)?
                }
            };
            let att = candle_nn::ops::softmax_last_dim(&att)?;
            // Convert to contiguous as matmul doesn't support strided vs for now.
            att.matmul(&v)?
        };
        let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
        let y = self.attn_output.forward(&y)?;
        Ok(y)
    }
}

#[cfg(feature = "flash-attn")]
fn flash_attn(
    q: &Tensor,
    k: &Tensor,
    v: &Tensor,
    softmax_scale: f32,
    causal: bool,
) -> Result<Tensor> {
    candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
}

#[cfg(not(feature = "flash-attn"))]
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
    unimplemented!("compile with '--features flash-attn'")
}

#[derive(Debug, Clone)]
pub struct ModelWeights {
    tok_embeddings: Embedding,
    layers: Vec<LayerWeights>,
    output_norm: RmsNorm,
    output: QLinear,
    masks: HashMap<usize, Tensor>,
    span: tracing::Span,
    span_output: tracing::Span,
}

fn precomput_freqs_cis(
    head_dim: usize,
    max_seq_len: usize,
    freq_base: f32,
    device: &Device,
) -> Result<(Tensor, Tensor)> {
    let theta: Vec<_> = (0..head_dim)
        .step_by(2)
        .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
        .collect();
    let theta = Tensor::new(theta.as_slice(), device)?;
    let idx_theta = Tensor::arange(0, max_seq_len as u32, device)?
        .to_dtype(DType::F32)?
        .reshape((max_seq_len, 1))?
        .matmul(&theta.reshape((1, theta.elem_count()))?)?;
    let cos = idx_theta.cos()?;
    let sin = idx_theta.sin()?;
    Ok((cos, sin))
}

impl ModelWeights {
    pub fn from_gguf<R: std::io::Seek + std::io::Read>(
        use_flash_attn: bool,
        ct: gguf_file::Content,
        reader: &mut R,
        device: &Device,
    ) -> Result<Self> {
        let md_get = |s: &str| match ct.metadata.get(s) {
            None => candle::bail!("cannot find {s} in metadata"),
            Some(v) => Ok(v),
        };

        // Parameter extraction from metadata.
        let head_count = md_get("phi3.attention.head_count")?.to_u32()? as usize;
        let head_count_kv = md_get("phi3.attention.head_count_kv")?.to_u32()? as usize;
        let block_count = md_get("phi3.block_count")?.to_u32()? as usize;
        let embedding_length = md_get("phi3.embedding_length")?.to_u32()? as usize;
        let max_seq_len = md_get("phi3.context_length")?.to_u32()? as usize;
        let head_dim = embedding_length / head_count;
        let i_size = md_get("phi3.feed_forward_length")?.to_u32()? as usize;
        let rope_dim = md_get("phi3.rope.dimension_count")?.to_u32()? as usize;
        let rms_eps = md_get("phi3.attention.layer_norm_rms_epsilon")?.to_f32()? as f64;
        let (cos, sin) = precomput_freqs_cis(rope_dim, max_seq_len, 10_000., device)?;
        let neg_inf = Tensor::new(f32::NEG_INFINITY, device)?;

        let tok_embeddings = ct.tensor(reader, "token_embd.weight", device)?;
        let tok_embeddings = tok_embeddings.dequantize(device)?;
        let output_norm = rms_norm(ct.tensor(reader, "output_norm.weight", device)?, rms_eps)?;
        let output = QLinear::new(&ct, reader, "output", device)?;

        let mut layers = Vec::with_capacity(block_count);
        for layer_idx in 0..block_count {
            let prefix = format!("blk.{layer_idx}");
            let ffn_up = QLinear::new(&ct, reader, &format!("{prefix}.ffn_up"), device)?;
            let ffn_down = QLinear::new(&ct, reader, &format!("{prefix}.ffn_down"), device)?;
            let mlp = Mlp {
                ffn_up,
                ffn_down,
                i_size,
            };
            let attn_norm = rms_norm(
                ct.tensor(reader, &format!("{prefix}.attn_norm.weight"), device)?,
                rms_eps,
            )?;
            let ffn_norm = rms_norm(
                ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"), device)?,
                rms_eps,
            )?;
            let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
            let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
            let kv_cache = KvCache::new(2, max_seq_len);
            layers.push(LayerWeights {
                attn_qkv: QLinear::new(&ct, reader, &format!("{prefix}.attn_qkv"), device)?,
                attn_output: QLinear::new(&ct, reader, &format!("{prefix}.attn_output"), device)?,
                attn_norm,
                ffn_norm,
                mlp,
                n_head: head_count,
                n_kv_head: head_count_kv,
                head_dim,
                cos: cos.clone(),
                sin: sin.clone(),
                neg_inf: neg_inf.clone(),
                kv_cache,
                use_flash_attn,
                span_attn,
                span_rot,
            })
        }
        let span = tracing::span!(tracing::Level::TRACE, "model");
        let span_output = tracing::span!(tracing::Level::TRACE, "output");
        Ok(Self {
            tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
            layers,
            output_norm,
            output,
            masks: HashMap::new(),
            span,
            span_output,
        })
    }

    fn mask(&mut self, t: usize, device: &Device) -> Result<Tensor> {
        if let Some(mask) = self.masks.get(&t) {
            Ok(mask.clone())
        } else {
            let mask: Vec<_> = (0..t)
                .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
                .collect();
            let mask = Tensor::from_slice(&mask, (t, t), device)?;
            self.masks.insert(t, mask.clone());
            Ok(mask)
        }
    }

    pub fn forward(&mut self, xs: &Tensor, index_pos: usize) -> Result<Tensor> {
        let (_b_sz, seq_len) = xs.dims2()?;
        let mask = if seq_len == 1 {
            None
        } else {
            Some(self.mask(seq_len, xs.device())?)
        };
        let _enter = self.span.enter();
        let mut xs = self.tok_embeddings.forward(xs)?;
        for layer in self.layers.iter_mut() {
            let residual = &xs;
            let ys = xs.apply(&layer.attn_norm)?;
            let ys = layer.forward_attn(&ys, mask.as_ref(), index_pos)?;
            let ys = (ys + residual)?;
            let residual = &ys;
            let ys = ys.apply(&layer.ffn_norm)?;
            let ys = layer.mlp.forward(&ys)?;
            xs = (ys + residual)?
        }
        let xs = xs.apply(&self.output_norm)?.i((.., seq_len - 1, ..))?;
        let _enter = self.span_output.enter();
        self.output.forward(&xs)
    }
}