1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
#![allow(dead_code)]
//! # Diffusion pipelines and models
//!
//! Noise schedulers can be used to set the trade-off between
//! inference speed and quality.
use candle::{Result, Tensor};
/// This represents how beta ranges from its minimum value to the maximum
/// during training.
#[derive(Debug, Clone, Copy)]
pub enum BetaSchedule {
/// Linear interpolation.
Linear,
/// Linear interpolation of the square root of beta.
ScaledLinear,
/// Glide cosine schedule
SquaredcosCapV2,
}
#[derive(Debug, Clone, Copy)]
pub enum PredictionType {
Epsilon,
VPrediction,
Sample,
}
/// Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
/// `(1-beta)` over time from `t = [0,1]`.
///
/// Contains a function `alpha_bar` that takes an argument `t` and transforms it to the cumulative product of `(1-beta)`
/// up to that part of the diffusion process.
pub(crate) fn betas_for_alpha_bar(num_diffusion_timesteps: usize, max_beta: f64) -> Result<Tensor> {
let alpha_bar = |time_step: usize| {
f64::cos((time_step as f64 + 0.008) / 1.008 * std::f64::consts::FRAC_PI_2).powi(2)
};
let mut betas = Vec::with_capacity(num_diffusion_timesteps);
for i in 0..num_diffusion_timesteps {
let t1 = i / num_diffusion_timesteps;
let t2 = (i + 1) / num_diffusion_timesteps;
betas.push((1.0 - alpha_bar(t2) / alpha_bar(t1)).min(max_beta));
}
let betas_len = betas.len();
Tensor::from_vec(betas, betas_len, &candle::Device::Cpu)
}
|