1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
use candle::{Device, Result, Tensor};
pub fn linspace(start: f64, stop: f64, steps: usize) -> Result<Tensor> {
if steps == 0 {
Tensor::from_vec(Vec::<f64>::new(), steps, &Device::Cpu)
} else if steps == 1 {
Tensor::from_vec(vec![start], steps, &Device::Cpu)
} else {
let delta = (stop - start) / (steps - 1) as f64;
let vs = (0..steps)
.map(|step| start + step as f64 * delta)
.collect::<Vec<_>>();
Tensor::from_vec(vs, steps, &Device::Cpu)
}
}
/// A linear interpolator for a sorted array of x and y values.
struct LinearInterpolator<'x, 'y> {
xp: &'x [f64],
fp: &'y [f64],
cache: usize,
}
impl LinearInterpolator<'_, '_> {
fn accel_find(&mut self, x: f64) -> usize {
let xidx = self.cache;
if x < self.xp[xidx] {
self.cache = self.xp[0..xidx].partition_point(|o| *o < x);
self.cache = self.cache.saturating_sub(1);
} else if x >= self.xp[xidx + 1] {
self.cache = self.xp[xidx..self.xp.len()].partition_point(|o| *o < x) + xidx;
self.cache = self.cache.saturating_sub(1);
}
self.cache
}
fn eval(&mut self, x: f64) -> f64 {
if x < self.xp[0] || x > self.xp[self.xp.len() - 1] {
return f64::NAN;
}
let idx = self.accel_find(x);
let x_l = self.xp[idx];
let x_h = self.xp[idx + 1];
let y_l = self.fp[idx];
let y_h = self.fp[idx + 1];
let dx = x_h - x_l;
if dx > 0.0 {
y_l + (x - x_l) / dx * (y_h - y_l)
} else {
f64::NAN
}
}
}
pub fn interp(x: &[f64], xp: &[f64], fp: &[f64]) -> Vec<f64> {
let mut interpolator = LinearInterpolator { xp, fp, cache: 0 };
x.iter().map(|&x| interpolator.eval(x)).collect()
}
|