summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/stella_en_v5.rs
blob: 761e44a9180675a8de4b7e9a2d44534169c3bac6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
//! Stella v5 model implementation.
//!
//! Stella is a dense text embedding model optimized for retrieval and similarity tasks.
//! This implementation provides support for multiple embedding dimensions.
//!
//! Key characteristics:
//! - Dense text embeddings optimized for similarity search
//! - Multiple output dimension support (256 to 8192)
//! - Grouped query attention (GQA)
//! - RMSNorm for layer normalization
//! - Rotary positional embeddings (RoPE)
//!
//! References:
//! - [MRL Framework](https://arxiv.org/abs/2205.13147)
//! - [Model Card](https://huggingface.co/dunzhang/stella_en_1.5B_v5)
//!

use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm};
use candle::{DType, Device, Error, IndexOp, Module, Result, Tensor, D};
use candle_nn::{layer_norm, Activation, LayerNorm, VarBuilder};
use std::sync::Arc;

// internal representation for identifying which model is being used
#[derive(Debug, Copy, Clone, PartialEq, serde::Deserialize)]
pub enum ModelVariant {
    Large, // 1.5B
    Small, // 400M
}

impl Default for ModelVariant {
    fn default() -> Self {
        Self::Large
    }
}

// Same as `qwen2` family of models with the exception being the `embed_head`
// The final `output` causal modelling head is swapped with a learned `dense` layer, `embed_head`
#[derive(Debug, Default, Clone, PartialEq, serde::Deserialize)]
pub struct Config {
    pub variant: ModelVariant,
    pub vocab_size: usize,
    pub hidden_size: usize,
    pub intermediate_size: usize,
    pub num_hidden_layers: usize,
    pub num_attention_heads: usize,
    pub max_position_embeddings: usize,
    pub rope_theta: f64,
    pub embed_head: EmbedHead,
    pub norm_eps: f64,             // RMSNorm for 1.5B || LayerNorm for 400M
    pub activation_fn: Activation, // Silu for 1.5B || Gelu for 400M
    // Unique to 1.5B
    pub num_key_value_heads: usize,
    // Unique to 400M
    pub type_vocab_size: usize,
    pub scaling_factor: f64,
}

// Excerpt from `stella` model card:
// `Stella_en_1.5B_v5` models have been trained on [MRL](https://arxiv.org/abs/2205.13147) enabling multiple output dimensions
// Embed head represents the config for various embedding dims supported
#[derive(Debug, Default, Clone, PartialEq, serde::Deserialize)]
pub struct EmbedHead {
    pub in_features: usize,
    pub out_features: usize,
}

/// An enum variant representing the Embedding head dimensions `stella` is trained on
/// As the [model-card](https://huggingface.co/dunzhang/stella_en_1.5B_v5#introduction) suggests, D1024 is good enough for most cases
#[derive(Debug, Clone, Copy)]
pub enum EmbedDim {
    Dim256,
    Dim768,
    Dim1024,
    Dim2048,
    Dim4096,
    Dim6144,
    Dim8192,
}

impl Default for EmbedDim {
    fn default() -> Self {
        Self::Dim1024
    }
}

impl EmbedDim {
    pub fn config(&self, in_features: usize) -> EmbedHead {
        EmbedHead {
            in_features,
            out_features: match &self {
                Self::Dim256 => 256,
                Self::Dim768 => 768,
                Self::Dim1024 => 1024,
                Self::Dim2048 => 2048,
                Self::Dim4096 => 4096,
                Self::Dim6144 => 6144,
                Self::Dim8192 => 8192,
            },
        }
    }
}

// Initialize a new `stella_en` model - with 400M variant or 1.5B variant
impl Config {
    /// Initialize a new `stella_en_1.5B_v5`` model with given embedding dim
    pub fn new_1_5_b_v5(embed_dim: EmbedDim) -> Self {
        // Representing config.json at https://huggingface.co/dunzhang/stella_en_1.5B_v5/blob/main/config.json
        // Removed `sliding_window` related config which is basically being carried forward from `qwen2` but not used here
        Self {
            variant: ModelVariant::Large,
            activation_fn: candle_nn::Activation::Silu,
            vocab_size: 151646,
            hidden_size: 1536,
            intermediate_size: 8960,
            num_hidden_layers: 28,
            num_attention_heads: 12,
            num_key_value_heads: 2,
            max_position_embeddings: 131072,
            rope_theta: 1000000.,
            norm_eps: 1e-06,
            embed_head: embed_dim.config(1536),
            ..Default::default()
        }
    }

    /// Initialize new `stella_en_400M_v5`
    pub fn new_400_m_v5(embed_dim: EmbedDim) -> Self {
        Self {
            variant: ModelVariant::Small,
            vocab_size: 30528,
            hidden_size: 1024,
            intermediate_size: 4096,
            num_hidden_layers: 24,
            num_attention_heads: 16,
            max_position_embeddings: 8192,
            type_vocab_size: 2,
            norm_eps: 1e-12,
            scaling_factor: 2.0,
            rope_theta: 160000.0,
            activation_fn: Activation::Gelu,
            embed_head: embed_dim.config(1024),
            ..Default::default()
        }
    }
}

#[derive(Debug, Clone)]
struct RotaryEmbedding {
    sin: Tensor,
    cos: Tensor,
}

impl RotaryEmbedding {
    fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
        let dim = cfg.hidden_size / cfg.num_attention_heads;
        // Factoring in `scaling factor` for `400M` variant
        let max_seq_len = if cfg.scaling_factor == 0. {
            cfg.max_position_embeddings
        } else {
            ((cfg.max_position_embeddings as f64) * cfg.scaling_factor) as usize
        };

        // let rot_dim = if cfg.variant == ModelVariant::Small { dim / 2 } else { dim };
        let inv_freq: Vec<_> = (0..dim)
            .step_by(2)
            .map(|i| {
                // Scaled rope_theta for 400M variant
                let rope_theta = if cfg.scaling_factor == 0. {
                    cfg.rope_theta
                } else {
                    cfg.rope_theta * cfg.scaling_factor
                };
                let mut freq = 1. / rope_theta.powf(i as f64 / dim as f64);

                if cfg.scaling_factor != 0. {
                    freq /= cfg.scaling_factor.powf(2.0 / (dim as f64))
                }

                freq as f32
            })
            .collect();

        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;

        // Calculate position embeddings with scaled sequence length
        let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
            .to_dtype(dtype)?
            .reshape((max_seq_len, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        // if cfg.variant == ModelVariant::Small {
        //     freqs = Tensor::cat(&[&freqs, &freqs], 1)?
        // }

        Ok(Self {
            sin: freqs.sin()?,
            cos: freqs.cos()?,
        })
    }

    // TODO: re-visit this
    fn apply_rotary_emb_qkv(&self, q: &Tensor, k: &Tensor) -> Result<(Tensor, Tensor)> {
        let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
        let cos = self.cos.narrow(0, 0, seq_len)?;
        let sin = self.sin.narrow(0, 0, seq_len)?;

        let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
        let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
        Ok((q_embed, k_embed))
    }
}

#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
    variant: ModelVariant,
    gate_proj: Linear,
    up_proj: Option<Linear>, // `up_proj` only for 1.5B variant
    down_proj: Linear,
    act_fn: Activation,
}

impl MLP {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_sz = cfg.hidden_size;
        let intermediate_sz = cfg.intermediate_size;

        let (gate_proj, up_proj, down_proj) = match cfg.variant {
            ModelVariant::Large => (
                linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?,
                Some(linear_no_bias(
                    hidden_sz,
                    intermediate_sz,
                    vb.pp("up_proj"),
                )?),
                linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?,
            ),
            ModelVariant::Small => (
                linear_no_bias(hidden_sz, intermediate_sz * 2, vb.pp("up_gate_proj"))?,
                None,
                linear(intermediate_sz, hidden_sz, vb.pp("down_proj"))?,
            ),
        };

        Ok(Self {
            variant: cfg.variant,
            gate_proj,
            up_proj,
            down_proj,
            act_fn: cfg.activation_fn,
        })
    }
}

impl Module for MLP {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let up = self.gate_proj.forward(xs)?;

        let (lhs, rhs) = match self.variant {
            ModelVariant::Large => {
                let lhs = up.apply(&self.act_fn)?;
                let rhs = xs.apply(self.up_proj.as_ref().unwrap())?;

                (lhs, rhs)
            }
            ModelVariant::Small => {
                // Get the dimensions
                let (_batch_size, _seq_len, hidden_dim) = up.dims3()?;
                let split_size = hidden_dim / 2;

                // Split along the last dimension (hidden_dim)
                let up_states = up.narrow(2, 0, split_size)?;
                let gate = up.narrow(2, split_size, split_size)?.apply(&self.act_fn)?;

                (up_states, gate)
            }
        };

        (lhs * rhs)?.apply(&self.down_proj)
    }
}

#[derive(Debug, Clone)]
struct Attention {
    qkv_proj: Linear,
    o_proj: Linear,
    num_heads: usize,
    num_kv_heads: usize,
    num_kv_groups: usize,
    head_dim: usize,
    hidden_size: usize,
    rotary_emb: Arc<RotaryEmbedding>,
    variant: ModelVariant,
}

impl Attention {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_sz = cfg.hidden_size;
        let num_heads = cfg.num_attention_heads;
        let num_kv_heads = cfg.num_key_value_heads;
        let num_kv_groups = if num_kv_heads > 0 {
            num_heads / num_kv_heads
        } else {
            0
        };
        let head_dim = hidden_sz / num_heads;

        let (qkv_proj, o_proj) = match cfg.variant {
            ModelVariant::Large => {
                // The 1.5B variant comes with separate `q, k, v` layers, let's merge it and standardize
                // Weights
                let q_w = vb
                    .pp("q_proj")
                    .get((num_heads * head_dim, hidden_sz), "weight")?;
                let k_w = vb
                    .pp("k_proj")
                    .get((num_kv_heads * head_dim, hidden_sz), "weight")?;
                let v_w = vb
                    .pp("v_proj")
                    .get((num_kv_heads * head_dim, hidden_sz), "weight")?;
                // Biases
                let q_b = vb.pp("q_proj").get(num_heads * head_dim, "bias")?;
                let k_b = vb.pp("k_proj").get(num_kv_heads * head_dim, "bias")?;
                let v_b = vb.pp("v_proj").get(num_kv_heads * head_dim, "bias")?;

                let qkv_w = Tensor::cat(&[&q_w, &k_w, &v_w], 0)?;
                let qkv_b = Tensor::cat(&[&q_b, &k_b, &v_b], 0)?;

                (
                    Linear::from_weights(qkv_w, Some(qkv_b)),
                    linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?,
                )
            }
            ModelVariant::Small => (
                linear(hidden_sz, 3 * num_heads * head_dim, vb.pp("qkv_proj"))?,
                linear(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?,
            ),
        };

        Ok(Self {
            qkv_proj,
            o_proj,
            num_heads,
            num_kv_heads,
            num_kv_groups,
            head_dim,
            hidden_size: hidden_sz,
            rotary_emb,
            variant: cfg.variant,
        })
    }

    fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
        let (b_sz, q_len, _) = xs.dims3()?;

        let qkv = self.qkv_proj.forward(xs)?;

        let n_kv_heads = match self.variant {
            ModelVariant::Large => self.num_kv_heads,
            ModelVariant::Small => self.num_heads,
        };

        let (query_states, key_states, value_states) = match self.variant {
            ModelVariant::Large => {
                let q_sz = self.num_heads * self.head_dim;
                let kv_sz = n_kv_heads * self.head_dim;

                let q = qkv.narrow(D::Minus1, 0, q_sz)?.reshape((
                    b_sz,
                    q_len,
                    self.num_heads,
                    self.head_dim,
                ))?;
                let k = qkv.narrow(D::Minus1, q_sz, kv_sz)?.reshape((
                    b_sz,
                    q_len,
                    n_kv_heads,
                    self.head_dim,
                ))?;
                let v = qkv.narrow(D::Minus1, q_sz + kv_sz, kv_sz)?.reshape((
                    b_sz,
                    q_len,
                    n_kv_heads,
                    self.head_dim,
                ))?;

                (q, k, v)
            }
            ModelVariant::Small => {
                // Split into Q, K, V and reshape to match PyTorch shapes
                let qkv = qkv.reshape((b_sz, q_len, 3, self.num_heads, self.head_dim))?;

                (
                    qkv.i((.., .., 0, .., ..))?,
                    qkv.i((.., .., 1, .., ..))?,
                    qkv.i((.., .., 2, .., ..))?,
                )
            }
        };

        let query_states = query_states.transpose(1, 2)?.contiguous()?;
        let key_states = key_states.transpose(1, 2)?.contiguous()?;
        let value_states = value_states.transpose(1, 2)?.contiguous()?;

        let (query_states, key_states) = self
            .rotary_emb
            .apply_rotary_emb_qkv(&query_states, &key_states)?;

        // The 1.5B is expected to have grouped query attention
        let (key_states, value_states) = if self.variant == ModelVariant::Large {
            (
                crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?,
                crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?,
            )
        } else {
            (key_states, value_states)
        };

        let attn_output = {
            let scale = 1f64 / f64::sqrt(self.head_dim as f64);
            let attn_weights = query_states.matmul(&key_states.transpose(2, 3)?)?;
            let attn_weights = (attn_weights * scale)?;

            let attn_weights = match attention_mask {
                None => attn_weights,
                Some(mask) => attn_weights.broadcast_add(mask)?,
            };
            let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;

            attn_weights.matmul(&value_states)?
        };

        attn_output
            .transpose(1, 2)?
            .reshape((b_sz, q_len, self.hidden_size))?
            .apply(&self.o_proj)
    }
}

#[derive(Debug, Clone)]
enum NormType {
    Layer(LayerNorm),
    Rms(RmsNorm),
}

#[derive(Debug, Clone)]
struct Layer {
    variant: ModelVariant,
    attention: Attention,
    mlp: MLP,
    // For 1.5B: this is `input_layernorm`
    // For 400M: this is `output_layernorm`
    layernorm: NormType,
    post_attention_layernorm: NormType,
}

impl Layer {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let attention = Attention::new(
            rotary_emb,
            cfg,
            vb.pp(if cfg.variant == ModelVariant::Large {
                "self_attn"
            } else {
                "attention"
            }),
        )?;
        let mlp = MLP::new(cfg, vb.pp("mlp"))?;
        let (layernorm, post_attention_layernorm) = match cfg.variant {
            ModelVariant::Large => (
                NormType::Rms(RmsNorm::new(
                    cfg.hidden_size,
                    cfg.norm_eps,
                    vb.pp("input_layernorm"),
                )?),
                NormType::Rms(RmsNorm::new(
                    cfg.hidden_size,
                    cfg.norm_eps,
                    vb.pp("post_attention_layernorm"),
                )?),
            ),
            ModelVariant::Small => (
                NormType::Layer(layer_norm(
                    cfg.hidden_size,
                    candle_nn::LayerNormConfig {
                        eps: cfg.norm_eps,
                        ..Default::default()
                    },
                    vb.pp("mlp_ln"),
                )?),
                NormType::Layer(layer_norm(
                    cfg.hidden_size,
                    candle_nn::LayerNormConfig {
                        eps: cfg.norm_eps,
                        ..Default::default()
                    },
                    vb.pp("attn_ln"),
                )?),
            ),
        };

        Ok(Self {
            variant: cfg.variant,
            attention,
            mlp,
            layernorm,
            post_attention_layernorm,
        })
    }

    fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
        // Here, the application of normalizations and activation calculations differ
        // For Large [1.5B]:
        //  residual = x
        //  state = other_layernorm(xs)
        //  state = attention(state)
        //  state += residual
        //  residual = state
        //  state = mlp(attention_layernorm(state))
        //  -> residual + state
        // For Small [400M]:
        //  residual = x;
        //  state = attention(x)
        //  state += residual
        //  state = attention_layernorm(state)
        //  residual = state
        //  state = mlp(state)
        //  state += residual
        //  -> other_layernorm(state)
        let residual = xs;

        match self.variant {
            ModelVariant::Large => {
                let (attn_ln, input_ln) = if let (NormType::Rms(attn_ln), NormType::Rms(input_ln)) =
                    (&self.post_attention_layernorm, &self.layernorm)
                {
                    (attn_ln, input_ln)
                } else {
                    return Err(candle::error::Error::Msg(
                        "Stella 1.5B expects RMSNorm".to_string(),
                    ));
                };

                let xs = input_ln.forward(xs)?;
                let xs = (self.attention.forward(&xs, attention_mask)? + residual)?;

                let residual = &xs;
                let xs = xs.apply(attn_ln)?.apply(&self.mlp)?;

                residual + xs
            }
            ModelVariant::Small => {
                let (attn_ln, output_ln) =
                    if let (NormType::Layer(attn_ln), NormType::Layer(input_ln)) =
                        (&self.post_attention_layernorm, &self.layernorm)
                    {
                        (attn_ln, input_ln)
                    } else {
                        return Err(candle::error::Error::Msg(
                            "Stella 400M expects RMSNorm".to_string(),
                        ));
                    };

                let xs = (self.attention.forward(xs, attention_mask)? + residual)?;
                let xs = attn_ln.forward(&xs)?;

                let residual = &xs;
                let xs = (self.mlp.forward(&xs)? + residual)?;

                output_ln.forward(&xs)
            }
        }
    }
}

#[derive(Debug, Clone)]
pub struct Embeddings {
    variant: ModelVariant,
    // For 1.5B: this is the `embed_tokens`
    // For 400M: this is the `word_embeddings`
    embeddings: candle_nn::Embedding,
    // folloing are specifically for 400M
    token_type_embeddings: Option<candle_nn::Embedding>,
    layer_norm: Option<LayerNorm>,
    position_ids: Option<Tensor>,
}

impl Embeddings {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let (embeddings, token_type_embeddings, layer_norm, position_ids) = match cfg.variant {
            ModelVariant::Large => (
                candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb.pp("embed_tokens"))?,
                None,
                None,
                None,
            ),
            ModelVariant::Small => {
                let vb = vb.pp("embeddings");
                let weight = vb.pp("LayerNorm").get_with_hints(
                    cfg.hidden_size,
                    "weight",
                    candle_nn::Init::Const(1.0),
                )?;
                let bias = vb.pp("LayerNorm").get_with_hints(
                    cfg.hidden_size,
                    "bias",
                    candle_nn::Init::Const(0.0),
                )?;
                let dev = bias.device().clone();

                let layer_norm = candle_nn::LayerNorm::new(weight, bias, cfg.norm_eps);

                (
                    candle_nn::embedding(
                        cfg.vocab_size,
                        cfg.hidden_size,
                        vb.pp("word_embeddings"),
                    )?,
                    Some(candle_nn::embedding(
                        cfg.type_vocab_size,
                        cfg.hidden_size,
                        vb.pp("token_type_embeddings"),
                    )?),
                    Some(layer_norm),
                    Some(Tensor::arange(
                        0u32,
                        cfg.max_position_embeddings as u32,
                        &dev,
                    )?),
                )
            }
        };

        Ok(Self {
            variant: cfg.variant,
            embeddings,
            token_type_embeddings,
            layer_norm,
            position_ids,
        })
    }
}

impl Module for Embeddings {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let embd = self.embeddings.forward(xs)?;
        // For 1.5B just forward the embeddings
        if self.variant == ModelVariant::Large {
            return Ok(embd);
        }

        let (token_type_embed, layer_norm, pos_ids) =
            if let (Some(token_type_embd), Some(layer_norm), Some(position_ids)) = (
                &self.token_type_embeddings,
                &self.layer_norm,
                &self.position_ids,
            ) {
                (token_type_embd, layer_norm, position_ids)
            } else {
                return Err(Error::Msg(
                    "Stella 400M requires `token_type_embeddings`, `layer_norm` and `position_ids`"
                        .to_string(),
                ));
            };

        let (batch_size, seq_length) = xs.dims2()?;

        let pos_ids = pos_ids
            .as_ref()
            .narrow(0, 0, seq_length)?
            .expand((batch_size, seq_length))?;

        layer_norm.forward(&embd.add(&token_type_embed.forward(&pos_ids.zeros_like()?)?)?)
    }
}

#[derive(Debug, Clone)]
pub struct Model {
    embeddings: Embeddings,
    layers: Vec<Layer>,
    norm: Option<RmsNorm>,
    device: Device,
    dtype: DType,
}

impl Model {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb_m = match cfg.variant {
            ModelVariant::Large => vb.pp("model"),
            ModelVariant::Small => vb.pp("new"),
        };
        // let embed_tokens =
        //     candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
        let embeddings = Embeddings::new(cfg, vb_m.clone())?;
        let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
        let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
        let vb_l = match cfg.variant {
            ModelVariant::Large => vb_m.pp("layers"),
            ModelVariant::Small => vb_m.pp("encoder").pp("layer"),
        };
        for layer_idx in 0..cfg.num_hidden_layers {
            let layer = Layer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
            layers.push(layer)
        }
        let norm = match cfg.variant {
            ModelVariant::Large => Some(RmsNorm::new(
                cfg.hidden_size,
                cfg.norm_eps,
                vb_m.pp("norm"),
            )?),
            ModelVariant::Small => None,
        };
        Ok(Self {
            embeddings,
            layers,
            norm,
            device: vb.device().clone(),
            dtype: vb.dtype(),
        })
    }

    fn prepare_attention_mask(&self, attn_mask: &Tensor) -> Result<Tensor> {
        let (b_sz, sql_len) = attn_mask.dims2()?;
        let mut mask: Vec<Tensor> = vec![];
        for b in 0..b_sz {
            mask.push(attn_mask.i((b, ..))?.expand((1, 1, sql_len, sql_len))?);
        }
        let mask = Tensor::cat(&mask, 0)?;
        let on_true = mask.zeros_like()?.to_dtype(self.dtype)?;
        let on_false = Tensor::new(f32::NEG_INFINITY, &self.device)?
            .broadcast_as(mask.shape())?
            .to_dtype(self.dtype)?;
        mask.where_cond(&on_true, &on_false)
    }

    pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let (_, seq_len) = input_ids.dims2()?;
        let attention_mask = if seq_len <= 1 {
            None
        } else {
            // This is not a `causal language modelling` task, we'll need to prepare a `non-causal` attention
            Some(self.prepare_attention_mask(mask)?)
        };

        let mut xs = self.embeddings.forward(input_ids)?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, attention_mask.as_ref())?
        }

        if let Some(n) = &self.norm {
            xs.apply(n)
        } else {
            Ok(xs)
        }
    }
}

#[derive(Debug)]
pub struct EmbeddingModel {
    base_model: Model,
    lm_head: Linear,
}

impl EmbeddingModel {
    pub fn new(cfg: &Config, base_vb: VarBuilder, embed_vb: VarBuilder) -> Result<Self> {
        let base_model = Model::new(cfg, base_vb.clone())?;
        let lm_head = linear(
            cfg.embed_head.in_features,
            cfg.embed_head.out_features,
            embed_vb.pp("linear"),
        )?;

        Ok(Self {
            base_model,
            lm_head,
        })
    }

    pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let x = self.base_model.forward(input_ids, mask)?;
        let x = self.pool(&x, mask)?;

        // No matter what keeping the final activations as F32 helps with the accuracy
        self.lm_head.forward(&x.to_dtype(DType::F32)?) // [B_sz, dim_size]
    }

    /// Same as forward pass but normalizes the output
    pub fn forward_norm(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let x = self.forward(input_ids, mask)?;
        // Normalize
        x.broadcast_div(&x.sqr()?.sum_keepdim(1)?.sqrt()?)
    }

    fn pool(&self, x: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let mask = mask.to_dtype(x.dtype())?; // [B_Sz, Seq_len]
        let (batch_size, seq_len, hidden_dim) = x.dims3()?;
        // expanding the shape of the mask from [B_Sz, Seq_len] -> [B_Sz, Seq_len, Hidden_size]
        let mask_expanded = mask
            .unsqueeze(2)?
            .broadcast_as((batch_size, seq_len, hidden_dim))?; // [B_Sz, Seq_len, Hidden_dim]

        let x = (x * &mask_expanded)?;

        // Sum
        let sum_mask = mask
            .sum(1)?
            .unsqueeze(1)?
            .expand((batch_size, hidden_dim))?;
        x.sum(1)? / sum_mask
    }
}