summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/stella_en_v5.rs
blob: 9d933fade599f709f2fc8d1322947f1d90dfe5b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm};
use candle::{DType, Device, IndexOp, Module, Result, Tensor};
use candle_nn::{Activation, VarBuilder};
use std::sync::Arc;

// Same as `qwen2` family of models with the exception being the `embed_head`
// The final `output` causal modelling head is swapped with a learned `dense` layer, `embed_head`
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct Config {
    pub vocab_size: usize,
    pub hidden_size: usize,
    pub intermediate_size: usize,
    pub num_hidden_layers: usize,
    pub num_attention_heads: usize,
    pub num_key_value_heads: usize,
    pub max_position_embeddings: usize,
    pub max_window_layers: usize,
    pub tie_word_embeddings: bool,
    pub rope_theta: f64,
    pub rms_norm_eps: f64,
    pub hidden_act: Activation,
    pub embed_head: EmbedHead,
}

// Excerpt from `stella` model card:
// `Stella_en_1.5B_v5` models have been trained on [MRL](https://arxiv.org/abs/2205.13147) enabling multiple output dimensions
// Embed head represents the config for various embedding dims supported
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct EmbedHead {
    pub in_features: usize,
    pub out_features: usize,
}

/// An enum variant representing the Embedding head dimensions `stella` is trained on
/// As the [model-card](https://huggingface.co/dunzhang/stella_en_1.5B_v5#introduction) suggests, D1024 is good enough for most cases
#[derive(Debug, Clone, Copy)]
pub enum EmbedDim {
    Dim256,
    Dim768,
    Dim1024,
    Dim2048,
    Dim4096,
    Dim6144,
    Dim8192,
}

impl Default for EmbedDim {
    fn default() -> Self {
        Self::Dim1024
    }
}

impl EmbedDim {
    pub fn config(&self) -> EmbedHead {
        EmbedHead {
            in_features: 1536,
            out_features: match &self {
                Self::Dim256 => 256,
                Self::Dim768 => 768,
                Self::Dim1024 => 1024,
                Self::Dim2048 => 2048,
                Self::Dim4096 => 4096,
                Self::Dim6144 => 6144,
                Self::Dim8192 => 8192,
            },
        }
    }
}

// Initialize a new `stella_en` model - with 400M variant or 1.5B variant
impl Config {
    /// Initialize a new `stella_en_1.5B_v5`` model with given embedding dim
    pub fn new_1_5_b_v5(embed_dim: EmbedDim) -> Self {
        // Representing config.json at https://huggingface.co/dunzhang/stella_en_1.5B_v5/blob/main/config.json
        // Removed `sliding_window` related config which is basically being carried forward from `qwen2` but not used here
        Self {
            hidden_act: candle_nn::Activation::Silu,
            vocab_size: 151646,
            hidden_size: 1536,
            intermediate_size: 8960,
            num_hidden_layers: 28,
            num_attention_heads: 12,
            num_key_value_heads: 2,
            max_position_embeddings: 131072,
            max_window_layers: 21,
            tie_word_embeddings: false,
            rope_theta: 1000000.,
            rms_norm_eps: 1e-06,
            embed_head: embed_dim.config(),
        }
    }
}

#[derive(Debug, Clone)]
struct RotaryEmbedding {
    sin: Tensor,
    cos: Tensor,
}

impl RotaryEmbedding {
    fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
        let dim = cfg.hidden_size / cfg.num_attention_heads;
        let max_seq_len = cfg.max_position_embeddings;
        let inv_freq: Vec<_> = (0..dim)
            .step_by(2)
            .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
            .collect();
        let inv_freq_len = inv_freq.len();
        let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
        let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
            .to_dtype(dtype)?
            .reshape((max_seq_len, 1))?;
        let freqs = t.matmul(&inv_freq)?;
        Ok(Self {
            sin: freqs.sin()?,
            cos: freqs.cos()?,
        })
    }

    fn apply_rotary_emb_qkv(&self, q: &Tensor, k: &Tensor) -> Result<(Tensor, Tensor)> {
        let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
        let cos = self.cos.narrow(0, 0, seq_len)?;
        let sin = self.sin.narrow(0, 0, seq_len)?;
        let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
        let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
        Ok((q_embed, k_embed))
    }
}

#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
    gate_proj: Linear,
    up_proj: Linear,
    down_proj: Linear,
    act_fn: Activation,
}

impl MLP {
    fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_sz = cfg.hidden_size;
        let intermediate_sz = cfg.intermediate_size;
        let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
        let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
        let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
        Ok(Self {
            gate_proj,
            up_proj,
            down_proj,
            act_fn: cfg.hidden_act,
        })
    }
}

impl Module for MLP {
    fn forward(&self, xs: &Tensor) -> Result<Tensor> {
        let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
        let rhs = xs.apply(&self.up_proj)?;
        (lhs * rhs)?.apply(&self.down_proj)
    }
}

#[derive(Debug, Clone)]
struct Attention {
    q_proj: Linear,
    k_proj: Linear,
    v_proj: Linear,
    o_proj: Linear,
    num_heads: usize,
    num_kv_heads: usize,
    num_kv_groups: usize,
    head_dim: usize,
    hidden_size: usize,
    rotary_emb: Arc<RotaryEmbedding>,
}

impl Attention {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let hidden_sz = cfg.hidden_size;
        let num_heads = cfg.num_attention_heads;
        let num_kv_heads = cfg.num_key_value_heads;
        let num_kv_groups = num_heads / num_kv_heads;
        let head_dim = hidden_sz / num_heads;
        let q_proj = linear(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
        let k_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
        let v_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
        let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
        Ok(Self {
            q_proj,
            k_proj,
            v_proj,
            o_proj,
            num_heads,
            num_kv_heads,
            num_kv_groups,
            head_dim,
            hidden_size: hidden_sz,
            rotary_emb,
        })
    }

    fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
        let (b_sz, q_len, _) = xs.dims3()?;

        let query_states = self.q_proj.forward(xs)?;
        let key_states = self.k_proj.forward(xs)?;
        let value_states = self.v_proj.forward(xs)?;

        let query_states = query_states
            .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
            .transpose(1, 2)?;
        let key_states = key_states
            .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
            .transpose(1, 2)?;
        let value_states = value_states
            .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
            .transpose(1, 2)?;

        let (query_states, key_states) = self
            .rotary_emb
            .apply_rotary_emb_qkv(&query_states, &key_states)?;

        let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
        let value_states =
            crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;

        let attn_output = {
            let scale = 1f64 / f64::sqrt(self.head_dim as f64);
            let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;

            let attn_weights = match attention_mask {
                None => attn_weights,
                Some(mask) => attn_weights.broadcast_add(mask)?,
            };
            let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
            attn_weights.matmul(&value_states)?
        };
        attn_output
            .transpose(1, 2)?
            .reshape((b_sz, q_len, self.hidden_size))?
            .apply(&self.o_proj)
    }
}

#[derive(Debug, Clone)]
struct DecoderLayer {
    self_attn: Attention,
    mlp: MLP,
    input_layernorm: RmsNorm,
    post_attention_layernorm: RmsNorm,
}

impl DecoderLayer {
    fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
        let mlp = MLP::new(cfg, vb.pp("mlp"))?;
        let input_layernorm =
            RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
        let post_attention_layernorm = RmsNorm::new(
            cfg.hidden_size,
            cfg.rms_norm_eps,
            vb.pp("post_attention_layernorm"),
        )?;
        Ok(Self {
            self_attn,
            mlp,
            input_layernorm,
            post_attention_layernorm,
        })
    }

    fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
        let residual = xs;
        let xs = self.input_layernorm.forward(xs)?;
        let xs = self.self_attn.forward(&xs, attention_mask)?;
        let xs = (xs + residual)?;
        let residual = &xs;
        let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
        residual + xs
    }
}

#[derive(Debug, Clone)]
pub struct Model {
    embed_tokens: candle_nn::Embedding,
    layers: Vec<DecoderLayer>,
    norm: RmsNorm,
    device: Device,
    dtype: DType,
}

impl Model {
    pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
        let vb_m = vb.pp("model");
        let embed_tokens =
            candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
        let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
        let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
        let vb_l = vb_m.pp("layers");
        for layer_idx in 0..cfg.num_hidden_layers {
            let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
            layers.push(layer)
        }
        let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
        Ok(Self {
            embed_tokens,
            layers,
            norm,
            // sliding_window: 0,
            device: vb.device().clone(),
            dtype: vb.dtype(),
        })
    }

    fn prepare_attention_mask(&self, attn_mask: &Tensor) -> Result<Tensor> {
        let (b_sz, sql_len) = attn_mask.dims2()?;
        let mut mask: Vec<Tensor> = vec![];
        for b in 0..b_sz {
            mask.push(attn_mask.i((b, ..))?.expand((1, 1, sql_len, sql_len))?);
        }
        let mask = Tensor::cat(&mask, 0)?;
        let on_true = mask.zeros_like()?.to_dtype(self.dtype)?;
        let on_false = Tensor::new(f32::NEG_INFINITY, &self.device)?
            .broadcast_as(mask.shape())?
            .to_dtype(self.dtype)?;
        mask.where_cond(&on_true, &on_false)
    }

    pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let (_, seq_len) = input_ids.dims2()?;
        let attention_mask = if seq_len <= 1 {
            None
        } else {
            // This is not a `causal language modelling` task, we'll need to prepare a `non-causal` attention
            Some(self.prepare_attention_mask(mask)?)
        };

        let mut xs = self.embed_tokens.forward(input_ids)?;
        for layer in self.layers.iter_mut() {
            xs = layer.forward(&xs, attention_mask.as_ref())?
        }
        xs.apply(&self.norm)
    }
}

#[derive(Debug, Clone)]
pub struct EmbeddingModel {
    base_model: Model,
    lm_head: Linear,
}

impl EmbeddingModel {
    pub fn new(cfg: &Config, base_vb: VarBuilder, embed_vb: VarBuilder) -> Result<Self> {
        let base_model = Model::new(cfg, base_vb.clone())?;
        let lm_head = linear(
            cfg.embed_head.in_features,
            cfg.embed_head.out_features,
            embed_vb.pp("linear"),
        )?;

        Ok(Self {
            base_model,
            lm_head,
        })
    }

    pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let x = self.base_model.forward(input_ids, mask)?;
        let x = self.pool(&x, mask)?;

        // No matter what keeping the final activations as F32 helps with the accuracy
        self.lm_head.forward(&x.to_dtype(DType::F32)?) // [B_sz, dim_size]
    }

    /// Same as forward pass but normalizes the output
    pub fn forward_norm(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let x = self.forward(input_ids, mask)?;
        // Normalize
        x.broadcast_div(&x.sqr()?.sum_keepdim(1)?.sqrt()?)
    }

    fn pool(&self, x: &Tensor, mask: &Tensor) -> Result<Tensor> {
        let mask = mask.to_dtype(x.dtype())?; // [B_Sz, Seq_len]
        let (batch_size, seq_len, hidden_dim) = x.dims3()?;
        // expanding the shape of the mask from [B_Sz, Seq_len] -> [B_Sz, Seq_len, Hidden_size]
        let mask_expanded = mask
            .unsqueeze(2)?
            .broadcast_as((batch_size, seq_len, hidden_dim))?; // [B_Sz, Seq_len, Hidden_dim]

        let x = (x * &mask_expanded)?;

        // Sum
        let sum_mask = mask
            .sum(1)?
            .unsqueeze(1)?
            .expand((batch_size, hidden_dim))?;
        x.sum(1)? / sum_mask
    }
}