1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
use candle::{Module, Result, Tensor};
use candle_nn::VarBuilder;
#[derive(Debug, Clone)]
pub struct Embedding {
inner: candle_nn::Embedding,
span: tracing::Span,
}
impl Embedding {
pub fn new(d1: usize, d2: usize, vb: VarBuilder) -> Result<Self> {
let inner = candle_nn::embedding(d1, d2, vb)?;
let span = tracing::span!(tracing::Level::TRACE, "embedding");
Ok(Self { inner, span })
}
pub fn embeddings(&self) -> &Tensor {
self.inner.embeddings()
}
}
impl Module for Embedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
#[derive(Debug, Clone)]
pub struct Linear {
inner: candle_nn::Linear,
span: tracing::Span,
}
impl Linear {
pub fn from_weights(weights: Tensor, bias: Option<Tensor>) -> Self {
let inner = candle_nn::Linear::new(weights, bias);
let span = tracing::span!(tracing::Level::TRACE, "linear");
Self { inner, span }
}
}
pub fn linear(d1: usize, d2: usize, vb: VarBuilder) -> Result<Linear> {
let inner = candle_nn::linear(d1, d2, vb)?;
let span = tracing::span!(tracing::Level::TRACE, "linear");
Ok(Linear { inner, span })
}
pub fn linear_no_bias(d1: usize, d2: usize, vb: VarBuilder) -> Result<Linear> {
let inner = candle_nn::linear_no_bias(d1, d2, vb)?;
let span = tracing::span!(tracing::Level::TRACE, "linear");
Ok(Linear { inner, span })
}
impl Module for Linear {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
// Wrap the conv2d op to provide some tracing.
#[derive(Debug, Clone)]
pub struct Conv2d {
inner: candle_nn::Conv2d,
span: tracing::Span,
}
impl Module for Conv2d {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(x)
}
}
pub fn conv2d(
in_channels: usize,
out_channels: usize,
kernel_size: usize,
cfg: candle_nn::Conv2dConfig,
vs: candle_nn::VarBuilder,
) -> Result<Conv2d> {
let span = tracing::span!(tracing::Level::TRACE, "conv2d");
let inner = candle_nn::conv2d(in_channels, out_channels, kernel_size, cfg, vs)?;
Ok(Conv2d { inner, span })
}
// QMatMul wrapper adding some tracing.
#[derive(Clone)]
pub struct QMatMul {
inner: candle::quantized::QMatMul,
span: tracing::Span,
}
impl QMatMul {
pub fn new(
out_dim: usize,
in_dim: usize,
vb: crate::quantized_var_builder::VarBuilder,
) -> Result<Self> {
let ws = vb.get((in_dim, out_dim), "weight")?;
let inner = candle::quantized::QMatMul::from_arc(ws)?;
let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
Ok(Self { inner, span })
}
}
impl Module for QMatMul {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
impl std::fmt::Debug for QMatMul {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "QMatMul")
}
}
|