1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
//! Bounding Boxes and Intersection
//!
//! This module provides functionality for handling bounding boxes and their manipulation,
//! particularly in the context of object detection. It includes tools for calculating
//! intersection over union (IoU) and non-maximum suppression (NMS).
/// A bounding box around an object.
#[derive(Debug, Clone)]
pub struct Bbox<D> {
pub xmin: f32,
pub ymin: f32,
pub xmax: f32,
pub ymax: f32,
pub confidence: f32,
pub data: D,
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct KeyPoint {
pub x: f32,
pub y: f32,
pub mask: f32,
}
/// Intersection over union of two bounding boxes.
pub fn iou<D>(b1: &Bbox<D>, b2: &Bbox<D>) -> f32 {
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
let i_xmin = b1.xmin.max(b2.xmin);
let i_xmax = b1.xmax.min(b2.xmax);
let i_ymin = b1.ymin.max(b2.ymin);
let i_ymax = b1.ymax.min(b2.ymax);
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
i_area / (b1_area + b2_area - i_area)
}
pub fn non_maximum_suppression<D>(bboxes: &mut [Vec<Bbox<D>>], threshold: f32) {
// Perform non-maximum suppression.
for bboxes_for_class in bboxes.iter_mut() {
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
let mut current_index = 0;
for index in 0..bboxes_for_class.len() {
let mut drop = false;
for prev_index in 0..current_index {
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
if iou > threshold {
drop = true;
break;
}
}
if !drop {
bboxes_for_class.swap(current_index, index);
current_index += 1;
}
}
bboxes_for_class.truncate(current_index);
}
}
// Updates confidences starting at highest and comparing subsequent boxes.
fn update_confidences<D>(
bboxes_for_class: &[Bbox<D>],
updated_confidences: &mut [f32],
iou_threshold: f32,
sigma: f32,
) {
let len = bboxes_for_class.len();
for current_index in 0..len {
let current_bbox = &bboxes_for_class[current_index];
for index in (current_index + 1)..len {
let iou_val = iou(current_bbox, &bboxes_for_class[index]);
if iou_val > iou_threshold {
// Decay calculation from page 4 of: https://arxiv.org/pdf/1704.04503
let decay = (-iou_val * iou_val / sigma).exp();
let updated_confidence = bboxes_for_class[index].confidence * decay;
updated_confidences[index] = updated_confidence;
}
}
}
}
// Sorts the bounding boxes by confidence and applies soft non-maximum suppression.
// This function is based on the algorithm described in https://arxiv.org/pdf/1704.04503
pub fn soft_non_maximum_suppression<D>(
bboxes: &mut [Vec<Bbox<D>>],
iou_threshold: Option<f32>,
confidence_threshold: Option<f32>,
sigma: Option<f32>,
) {
let iou_threshold = iou_threshold.unwrap_or(0.5);
let confidence_threshold = confidence_threshold.unwrap_or(0.1);
let sigma = sigma.unwrap_or(0.5);
for bboxes_for_class in bboxes.iter_mut() {
// Sort boxes by confidence in descending order
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
let mut updated_confidences = bboxes_for_class
.iter()
.map(|bbox| bbox.confidence)
.collect::<Vec<_>>();
update_confidences(
bboxes_for_class,
&mut updated_confidences,
iou_threshold,
sigma,
);
// Update confidences, set to 0.0 if below threshold
for (i, &confidence) in updated_confidences.iter().enumerate() {
bboxes_for_class[i].confidence = if confidence < confidence_threshold {
0.0
} else {
confidence
};
}
}
}
|