summaryrefslogtreecommitdiff
path: root/candle-wasm-examples/blip/src/bin/m.rs
blob: 660bb7174329655099f5168f388390063457fca8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use candle_transformers::models::blip;
use candle_transformers::models::quantized_blip;
use candle_wasm_example_blip::console_log;
use candle_wasm_example_blip::token_output_stream::TokenOutputStream;
use js_sys::Date;
use tokenizers::Tokenizer;
use wasm_bindgen::prelude::*;

enum SelectedModel {
    M(blip::BlipForConditionalGeneration),
    Q(quantized_blip::BlipForConditionalGeneration),
}

impl SelectedModel {
    fn text_decoder_forward(&mut self, xs: &Tensor, img_xs: &Tensor) -> Result<Tensor, JsError> {
        match self {
            Self::M(m) => m
                .text_decoder()
                .forward(xs, img_xs)
                .map_err(|e| JsError::new(&e.to_string())),
            Self::Q(m) => m
                .text_decoder()
                .forward(xs, img_xs)
                .map_err(|e| JsError::new(&e.to_string())),
        }
    }
    fn reset_kv_cache(&mut self) {
        match self {
            Self::M(m) => m.reset_kv_cache(),
            Self::Q(m) => m.reset_kv_cache(),
        }
    }
}
#[wasm_bindgen]
pub struct Model {
    model: SelectedModel,
    tokenizer: TokenOutputStream,
}
const SEP_TOKEN_ID: u32 = 102;

#[wasm_bindgen]
impl Model {
    #[wasm_bindgen(constructor)]
    pub fn load(
        weights: Vec<u8>,
        tokenizer: Vec<u8>,
        config: Vec<u8>,
        quantized: bool,
    ) -> Result<Model, JsError> {
        console_error_panic_hook::set_once();
        console_log!("loading model");
        let tokenizer =
            Tokenizer::from_bytes(&tokenizer).map_err(|m| JsError::new(&m.to_string()))?;
        let tokenizer = TokenOutputStream::new(tokenizer);

        let config: blip::Config = serde_json::from_slice(&config)?;
        let device = Device::Cpu;

        let start = Date::now();
        let model: SelectedModel = if quantized {
            let vb = quantized_blip::VarBuilder::from_gguf_buffer(&weights)?;
            let model = quantized_blip::BlipForConditionalGeneration::new(&config, vb)?;
            SelectedModel::Q(model)
        } else {
            let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, &device)?;
            let model = blip::BlipForConditionalGeneration::new(&config, vb)?;
            SelectedModel::M(model)
        };

        console_log!("model loaded in {:?}s", (Date::now() - start) / 1000.);
        Ok(Self { model, tokenizer })
    }
    #[wasm_bindgen]
    pub fn generate_caption_from_image(&mut self, image: Vec<u8>) -> Result<String, JsError> {
        self.model.reset_kv_cache();

        let device = Device::Cpu;
        console_log!("loading image as tensor");
        let start = Date::now();
        let image: Tensor = self.load_image(image)?.to_device(&device)?;
        console_log!("image loaded in {:?}s", (Date::now() - start) / 1000.);
        let start = Date::now();
        let image_embeds: Tensor = match &mut self.model {
            SelectedModel::M(m) => image.unsqueeze(0)?.apply(m.vision_model())?,
            SelectedModel::Q(m) => image.unsqueeze(0)?.apply(m.vision_model())?,
        };
        console_log!("image embedded in {:?}s", (Date::now() - start) / 1000.);
        let mut logits_processor = LogitsProcessor::new(299792458, None, None);
        let mut token_ids = vec![30522u32];
        let mut text: String = "".to_string();

        let start = Date::now();
        for index in 0..1000 {
            let context_size = if index > 0 { 1 } else { token_ids.len() };
            let start_pos = token_ids.len().saturating_sub(context_size);
            let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?;
            let logits = self.model.text_decoder_forward(&input_ids, &image_embeds)?;
            let logits = logits.squeeze(0)?;
            let logits = logits.get(logits.dim(0)? - 1)?;
            let token = logits_processor.sample(&logits)?;
            if token == SEP_TOKEN_ID {
                break;
            }
            token_ids.push(token);
            if let Some(t) = self.tokenizer.next_token(token)? {
                text.push_str(&t);
            }
        }
        if let Some(rest) = self
            .tokenizer
            .decode_rest()
            .map_err(|m| JsError::new(&m.to_string()))?
        {
            text.push_str(&rest);
        }
        console_log!("caption generated in {:?}s", (Date::now() - start) / 1000.);
        Ok(text)
    }
}

impl Model {
    fn load_image(&self, image: Vec<u8>) -> Result<Tensor, JsError> {
        let device = &Device::Cpu;
        let img = image::io::Reader::new(std::io::Cursor::new(image))
            .with_guessed_format()?
            .decode()
            .map_err(|e| JsError::new(&e.to_string()))?
            .resize_to_fill(384, 384, image::imageops::FilterType::Triangle);
        let img = img.to_rgb8();
        let data = img.into_raw();
        let data = Tensor::from_vec(data, (384, 384, 3), device)?.permute((2, 0, 1))?;
        let mean =
            Tensor::new(&[0.48145466f32, 0.4578275, 0.40821073], device)?.reshape((3, 1, 1))?;
        let std =
            Tensor::new(&[0.26862954f32, 0.261_302_6, 0.275_777_1], device)?.reshape((3, 1, 1))?;
        (data.to_dtype(candle::DType::F32)? / 255.)?
            .broadcast_sub(&mean)?
            .broadcast_div(&std)
            .map_err(|e| JsError::new(&e.to_string()))
    }
}

fn main() {
    console_error_panic_hook::set_once();
}