diff options
author | Stefan Monnier <monnier@iro.umontreal.ca> | 2012-06-03 21:05:17 -0400 |
---|---|---|
committer | Stefan Monnier <monnier@iro.umontreal.ca> | 2012-06-03 21:05:17 -0400 |
commit | 7c1898a7b93053cd0431f46f02d82c0a31bfb8bf (patch) | |
tree | 13d62ca0ada361b4f60770326b9f7b6abfdaf6b6 /lisp/emacs-lisp/cl-seq.el | |
parent | 418cd7265a941032b467215839b3726b3ba37b0b (diff) | |
download | emacs-7c1898a7b93053cd0431f46f02d82c0a31bfb8bf.tar.gz emacs-7c1898a7b93053cd0431f46f02d82c0a31bfb8bf.tar.bz2 emacs-7c1898a7b93053cd0431f46f02d82c0a31bfb8bf.zip |
* lisp/emacs-lisp/cl-lib.el: Rename from cl.el.
* lisp/emacs-lisp/cl.el: New compatibility file.
* emacs-lisp/cl-lib.el, lisp/emacs-lisp/cl-seq.el, lisp/emacs-lisp/cl-macs.el:
* lisp/emacs-lisp/cl-extra.el: Rename all top-level functions and variables
to obey the "cl-" prefix.
* lisp/emacs-lisp/macroexp.el (macroexpand-all-1): Adjust to new name.
Diffstat (limited to 'lisp/emacs-lisp/cl-seq.el')
-rw-r--r-- | lisp/emacs-lisp/cl-seq.el | 212 |
1 files changed, 106 insertions, 106 deletions
diff --git a/lisp/emacs-lisp/cl-seq.el b/lisp/emacs-lisp/cl-seq.el index 233f0c83a6e..1db2f19349b 100644 --- a/lisp/emacs-lisp/cl-seq.el +++ b/lisp/emacs-lisp/cl-seq.el @@ -41,7 +41,7 @@ ;;; Code: -(require 'cl) +(require 'cl-lib) ;;; Keyword parsing. This is special-cased here so that we can compile ;;; this file independent from cl-macs. @@ -118,13 +118,13 @@ ;;;###autoload -(defun reduce (cl-func cl-seq &rest cl-keys) +(defun cl-reduce (cl-func cl-seq &rest cl-keys) "Reduce two-argument FUNCTION across SEQ. \nKeywords supported: :start :end :from-end :initial-value :key \n(fn FUNCTION SEQ [KEYWORD VALUE]...)" (cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) () (or (listp cl-seq) (setq cl-seq (append cl-seq nil))) - (setq cl-seq (subseq cl-seq cl-start cl-end)) + (setq cl-seq (cl-subseq cl-seq cl-start cl-end)) (if cl-from-end (setq cl-seq (nreverse cl-seq))) (let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value) (cl-seq (cl-check-key (pop cl-seq))) @@ -139,7 +139,7 @@ cl-accum))) ;;;###autoload -(defun fill (seq item &rest cl-keys) +(defun cl-fill (seq item &rest cl-keys) "Fill the elements of SEQ with ITEM. \nKeywords supported: :start :end \n(fn SEQ ITEM [KEYWORD VALUE]...)" @@ -159,7 +159,7 @@ seq)) ;;;###autoload -(defun replace (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-replace (cl-seq1 cl-seq2 &rest cl-keys) "Replace the elements of SEQ1 with the elements of SEQ2. SEQ1 is destructively modified, then returned. \nKeywords supported: :start1 :end1 :start2 :end2 @@ -202,7 +202,7 @@ SEQ1 is destructively modified, then returned. cl-seq1)) ;;;###autoload -(defun remove* (cl-item cl-seq &rest cl-keys) +(defun cl-remove (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. @@ -216,7 +216,7 @@ to avoid corrupting the original SEQ. (let ((cl-i (cl--position cl-item cl-seq cl-start cl-end cl-from-end))) (if cl-i - (let ((cl-res (apply 'delete* cl-item (append cl-seq nil) + (let ((cl-res (apply 'cl-delete cl-item (append cl-seq nil) (append (if cl-from-end (list :end (1+ cl-i)) (list :start cl-i)) @@ -237,10 +237,10 @@ to avoid corrupting the original SEQ. (not (cl-check-test cl-item (car cl-p)))) (setq cl-p (cdr cl-p) cl-end (1- cl-end))) (if (and cl-p (> cl-end 0)) - (nconc (ldiff cl-seq cl-p) + (nconc (cl-ldiff cl-seq cl-p) (if (= cl-count 1) (cdr cl-p) (and (cdr cl-p) - (apply 'delete* cl-item + (apply 'cl-delete cl-item (copy-sequence (cdr cl-p)) :start 0 :end (1- cl-end) :count (1- cl-count) cl-keys)))) @@ -248,25 +248,25 @@ to avoid corrupting the original SEQ. cl-seq))))) ;;;###autoload -(defun remove-if (cl-pred cl-list &rest cl-keys) +(defun cl-remove-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'remove* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-remove nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun remove-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-remove-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'remove* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-remove nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun delete* (cl-item cl-seq &rest cl-keys) +(defun cl-delete (cl-item cl-seq &rest cl-keys) "Remove all occurrences of ITEM in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :test :test-not :key :count :start :end :from-end @@ -307,33 +307,33 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (setq cl-p (cdr cl-p))) (setq cl-end (1- cl-end))))) cl-seq) - (apply 'remove* cl-item cl-seq cl-keys))))) + (apply 'cl-remove cl-item cl-seq cl-keys))))) ;;;###autoload -(defun delete-if (cl-pred cl-list &rest cl-keys) +(defun cl-delete-if (cl-pred cl-list &rest cl-keys) "Remove all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'delete* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-delete nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun delete-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-delete-if-not (cl-pred cl-list &rest cl-keys) "Remove all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'delete* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-delete nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun remove-duplicates (cl-seq &rest cl-keys) +(defun cl-remove-duplicates (cl-seq &rest cl-keys) "Return a copy of SEQ with all duplicate elements removed. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn SEQ [KEYWORD VALUE]...)" (cl--delete-duplicates cl-seq cl-keys t)) ;;;###autoload -(defun delete-duplicates (cl-seq &rest cl-keys) +(defun cl-delete-duplicates (cl-seq &rest cl-keys) "Remove all duplicate elements from SEQ (destructively). \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn SEQ [KEYWORD VALUE]...)" @@ -380,7 +380,7 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. (if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))) ;;;###autoload -(defun substitute (cl-new cl-old cl-seq &rest cl-keys) +(defun cl-substitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. @@ -398,29 +398,29 @@ to avoid corrupting the original SEQ. (or cl-from-end (progn (cl-set-elt cl-seq cl-i cl-new) (setq cl-i (1+ cl-i) cl-count (1- cl-count)))) - (apply 'nsubstitute cl-new cl-old cl-seq :count cl-count + (apply 'cl-nsubstitute cl-new cl-old cl-seq :count cl-count :start cl-i cl-keys)))))) ;;;###autoload -(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-substitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'substitute cl-new nil cl-list :if cl-pred cl-keys)) + (apply 'cl-substitute cl-new nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-substitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a non-destructive function; it makes a copy of SEQ if necessary to avoid corrupting the original SEQ. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'substitute cl-new nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-substitute cl-new nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys) +(defun cl-nsubstitute (cl-new cl-old cl-seq &rest cl-keys) "Substitute NEW for OLD in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :test :test-not :key :count :start :end :from-end @@ -454,48 +454,48 @@ This is a destructive function; it reuses the storage of SEQ whenever possible. cl-seq)) ;;;###autoload -(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'nsubstitute cl-new nil cl-list :if cl-pred cl-keys)) + (apply 'cl-nsubstitute cl-new nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) +(defun cl-nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys) "Substitute NEW for all items not satisfying PREDICATE in SEQ. This is a destructive function; it reuses the storage of SEQ whenever possible. \nKeywords supported: :key :count :start :end :from-end \n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun find (cl-item cl-seq &rest cl-keys) +(defun cl-find (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in SEQ. Return the matching ITEM, or nil if not found. \nKeywords supported: :test :test-not :key :start :end :from-end \n(fn ITEM SEQ [KEYWORD VALUE]...)" - (let ((cl-pos (apply 'position cl-item cl-seq cl-keys))) + (let ((cl-pos (apply 'cl-position cl-item cl-seq cl-keys))) (and cl-pos (elt cl-seq cl-pos)))) ;;;###autoload -(defun find-if (cl-pred cl-list &rest cl-keys) +(defun cl-find-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'find nil cl-list :if cl-pred cl-keys)) + (apply 'cl-find nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun find-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-find-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in SEQ. Return the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'find nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-find nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun position (cl-item cl-seq &rest cl-keys) +(defun cl-position (cl-item cl-seq &rest cl-keys) "Find the first occurrence of ITEM in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :test :test-not :key :start :end :from-end @@ -526,23 +526,23 @@ Return the index of the matching item, or nil if not found. (and (< cl-start cl-end) cl-start)))) ;;;###autoload -(defun position-if (cl-pred cl-list &rest cl-keys) +(defun cl-position-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'position nil cl-list :if cl-pred cl-keys)) + (apply 'cl-position nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun position-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-position-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in SEQ. Return the index of the matching item, or nil if not found. \nKeywords supported: :key :start :end :from-end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'position nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-position nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun count (cl-item cl-seq &rest cl-keys) +(defun cl-count (cl-item cl-seq &rest cl-keys) "Count the number of occurrences of ITEM in SEQ. \nKeywords supported: :test :test-not :key :start :end \n(fn ITEM SEQ [KEYWORD VALUE]...)" @@ -557,21 +557,21 @@ Return the index of the matching item, or nil if not found. cl-count))) ;;;###autoload -(defun count-if (cl-pred cl-list &rest cl-keys) +(defun cl-count-if (cl-pred cl-list &rest cl-keys) "Count the number of items satisfying PREDICATE in SEQ. \nKeywords supported: :key :start :end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'count nil cl-list :if cl-pred cl-keys)) + (apply 'cl-count nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun count-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-count-if-not (cl-pred cl-list &rest cl-keys) "Count the number of items not satisfying PREDICATE in SEQ. \nKeywords supported: :key :start :end \n(fn PREDICATE SEQ [KEYWORD VALUE]...)" - (apply 'count nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-count nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-mismatch (cl-seq1 cl-seq2 &rest cl-keys) "Compare SEQ1 with SEQ2, return index of first mismatching element. Return nil if the sequences match. If one sequence is a prefix of the other, the return value indicates the end of the shorter sequence. @@ -602,7 +602,7 @@ other, the return value indicates the end of the shorter sequence. cl-start1))))) ;;;###autoload -(defun search (cl-seq1 cl-seq2 &rest cl-keys) +(defun cl-search (cl-seq1 cl-seq2 &rest cl-keys) "Search for SEQ1 as a subsequence of SEQ2. Return the index of the leftmost element of the first match found; return nil if there are no matches. @@ -621,7 +621,7 @@ return nil if there are no matches. (while (and (< cl-start2 cl-end2) (setq cl-pos (cl--position cl-first cl-seq2 cl-start2 cl-end2 cl-from-end)) - (apply 'mismatch cl-seq1 cl-seq2 + (apply 'cl-mismatch cl-seq1 cl-seq2 :start1 (1+ cl-start1) :end1 cl-end1 :start2 (1+ cl-pos) :end2 (+ cl-pos cl-len) :from-end nil cl-keys)) @@ -629,13 +629,13 @@ return nil if there are no matches. (and (< cl-start2 cl-end2) cl-pos))))) ;;;###autoload -(defun sort* (cl-seq cl-pred &rest cl-keys) +(defun cl-sort (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQ according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. \nKeywords supported: :key \n(fn SEQ PREDICATE [KEYWORD VALUE]...)" (if (nlistp cl-seq) - (replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys)) + (cl-replace cl-seq (apply 'cl-sort (append cl-seq nil) cl-pred cl-keys)) (cl-parsing-keywords (:key) () (if (memq cl-key '(nil identity)) (sort cl-seq cl-pred) @@ -644,15 +644,15 @@ This is a destructive function; it reuses the storage of SEQ if possible. (funcall cl-key cl-y))))))))) ;;;###autoload -(defun stable-sort (cl-seq cl-pred &rest cl-keys) +(defun cl-stable-sort (cl-seq cl-pred &rest cl-keys) "Sort the argument SEQ stably according to PREDICATE. This is a destructive function; it reuses the storage of SEQ if possible. \nKeywords supported: :key \n(fn SEQ PREDICATE [KEYWORD VALUE]...)" - (apply 'sort* cl-seq cl-pred cl-keys)) + (apply 'cl-sort cl-seq cl-pred cl-keys)) ;;;###autoload -(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) +(defun cl-merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys) "Destructively merge the two sequences to produce a new sequence. TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument sequences, and PREDICATE is a `less-than' predicate on the elements. @@ -667,11 +667,11 @@ sequences, and PREDICATE is a `less-than' predicate on the elements. (cl-check-key (car cl-seq1))) (push (pop cl-seq2) cl-res) (push (pop cl-seq1) cl-res))) - (coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) + (cl-coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type)))) ;;; See compiler macro in cl-macs.el ;;;###autoload -(defun member* (cl-item cl-list &rest cl-keys) +(defun cl-member (cl-item cl-list &rest cl-keys) "Find the first occurrence of ITEM in LIST. Return the sublist of LIST whose car is ITEM. \nKeywords supported: :test :test-not :key @@ -686,31 +686,31 @@ Return the sublist of LIST whose car is ITEM. (memq cl-item cl-list)))) ;;;###autoload -(defun member-if (cl-pred cl-list &rest cl-keys) +(defun cl-member-if (cl-pred cl-list &rest cl-keys) "Find the first item satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'member* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-member nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun member-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-member-if-not (cl-pred cl-list &rest cl-keys) "Find the first item not satisfying PREDICATE in LIST. Return the sublist of LIST whose car matches. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'member* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-member nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload (defun cl--adjoin (cl-item cl-list &rest cl-keys) (if (cl-parsing-keywords (:key) t - (apply 'member* (cl-check-key cl-item) cl-list cl-keys)) + (apply 'cl-member (cl-check-key cl-item) cl-list cl-keys)) cl-list (cons cl-item cl-list))) ;;; See compiler macro in cl-macs.el ;;;###autoload -(defun assoc* (cl-item cl-alist &rest cl-keys) +(defun cl-assoc (cl-item cl-alist &rest cl-keys) "Find the first item whose car matches ITEM in LIST. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" @@ -726,21 +726,21 @@ Return the sublist of LIST whose car matches. (assq cl-item cl-alist)))) ;;;###autoload -(defun assoc-if (cl-pred cl-list &rest cl-keys) +(defun cl-assoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose car satisfies PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'assoc* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-assoc nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun assoc-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-assoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose car does not satisfy PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'assoc* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-assoc nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun rassoc* (cl-item cl-alist &rest cl-keys) +(defun cl-rassoc (cl-item cl-alist &rest cl-keys) "Find the first item whose cdr matches ITEM in LIST. \nKeywords supported: :test :test-not :key \n(fn ITEM LIST [KEYWORD VALUE]...)" @@ -754,21 +754,21 @@ Return the sublist of LIST whose car matches. (rassq cl-item cl-alist))) ;;;###autoload -(defun rassoc-if (cl-pred cl-list &rest cl-keys) +(defun cl-rassoc-if (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr satisfies PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'rassoc* nil cl-list :if cl-pred cl-keys)) + (apply 'cl-rassoc nil cl-list :if cl-pred cl-keys)) ;;;###autoload -(defun rassoc-if-not (cl-pred cl-list &rest cl-keys) +(defun cl-rassoc-if-not (cl-pred cl-list &rest cl-keys) "Find the first item whose cdr does not satisfy PREDICATE in LIST. \nKeywords supported: :key \n(fn PREDICATE LIST [KEYWORD VALUE]...)" - (apply 'rassoc* nil cl-list :if-not cl-pred cl-keys)) + (apply 'cl-rassoc nil cl-list :if-not cl-pred cl-keys)) ;;;###autoload -(defun union (cl-list1 cl-list2 &rest cl-keys) +(defun cl-union (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The resulting list contains all items that appear in either LIST1 or LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -782,14 +782,14 @@ to avoid corrupting the original LIST1 and LIST2. (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (or cl-keys (numberp (car cl-list2))) - (setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys)) + (setq cl-list1 (apply 'cl-adjoin (car cl-list2) cl-list1 cl-keys)) (or (memq (car cl-list2) cl-list1) (push (car cl-list2) cl-list1))) (pop cl-list2)) cl-list1))) ;;;###autoload -(defun nunion (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nunion (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-union operation. The resulting list contains all items that appear in either LIST1 or LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 @@ -797,10 +797,10 @@ whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) - (t (apply 'union cl-list1 cl-list2 cl-keys)))) + (t (apply 'cl-union cl-list1 cl-list2 cl-keys)))) ;;;###autoload -(defun intersection (cl-list1 cl-list2 &rest cl-keys) +(defun cl-intersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The resulting list contains all items that appear in both LIST1 and LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -815,7 +815,7 @@ to avoid corrupting the original LIST1 and LIST2. (setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1)))) (while cl-list2 (if (if (or cl-keys (numberp (car cl-list2))) - (apply 'member* (cl-check-key (car cl-list2)) + (apply 'cl-member (cl-check-key (car cl-list2)) cl-list1 cl-keys) (memq (car cl-list2) cl-list1)) (push (car cl-list2) cl-res)) @@ -823,17 +823,17 @@ to avoid corrupting the original LIST1 and LIST2. cl-res))))) ;;;###autoload -(defun nintersection (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nintersection (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-intersection operation. The resulting list contains all items that appear in both LIST1 and LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" - (and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys))) + (and cl-list1 cl-list2 (apply 'cl-intersection cl-list1 cl-list2 cl-keys))) ;;;###autoload -(defun set-difference (cl-list1 cl-list2 &rest cl-keys) +(defun cl-set-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The resulting list contains all items that appear in LIST1 but not LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -845,7 +845,7 @@ to avoid corrupting the original LIST1 and LIST2. (let ((cl-res nil)) (while cl-list1 (or (if (or cl-keys (numberp (car cl-list1))) - (apply 'member* (cl-check-key (car cl-list1)) + (apply 'cl-member (cl-check-key (car cl-list1)) cl-list2 cl-keys) (memq (car cl-list1) cl-list2)) (push (car cl-list1) cl-res)) @@ -853,7 +853,7 @@ to avoid corrupting the original LIST1 and LIST2. cl-res)))) ;;;###autoload -(defun nset-difference (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nset-difference (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-difference operation. The resulting list contains all items that appear in LIST1 but not LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 @@ -861,10 +861,10 @@ whenever possible. \nKeywords supported: :test :test-not :key \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (if (or (null cl-list1) (null cl-list2)) cl-list1 - (apply 'set-difference cl-list1 cl-list2 cl-keys))) + (apply 'cl-set-difference cl-list1 cl-list2 cl-keys))) ;;;###autoload -(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) +(defun cl-set-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The resulting list contains all items appearing in exactly one of LIST1, LIST2. This is a non-destructive function; it makes a copy of the data if necessary @@ -873,11 +873,11 @@ to avoid corrupting the original LIST1 and LIST2. \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) - (t (append (apply 'set-difference cl-list1 cl-list2 cl-keys) - (apply 'set-difference cl-list2 cl-list1 cl-keys))))) + (t (append (apply 'cl-set-difference cl-list1 cl-list2 cl-keys) + (apply 'cl-set-difference cl-list2 cl-list1 cl-keys))))) ;;;###autoload -(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) +(defun cl-nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys) "Combine LIST1 and LIST2 using a set-exclusive-or operation. The resulting list contains all items appearing in exactly one of LIST1, LIST2. This is a destructive function; it reuses the storage of LIST1 and LIST2 @@ -886,11 +886,11 @@ whenever possible. \n(fn LIST1 LIST2 [KEYWORD VALUE]...)" (cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1) ((equal cl-list1 cl-list2) nil) - (t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys) - (apply 'nset-difference cl-list2 cl-list1 cl-keys))))) + (t (nconc (apply 'cl-nset-difference cl-list1 cl-list2 cl-keys) + (apply 'cl-nset-difference cl-list2 cl-list1 cl-keys))))) ;;;###autoload -(defun subsetp (cl-list1 cl-list2 &rest cl-keys) +(defun cl-subsetp (cl-list1 cl-list2 &rest cl-keys) "Return true if LIST1 is a subset of LIST2. I.e., if every element of LIST1 also appears in LIST2. \nKeywords supported: :test :test-not :key @@ -899,54 +899,54 @@ I.e., if every element of LIST1 also appears in LIST2. ((equal cl-list1 cl-list2) t) (t (cl-parsing-keywords (:key) (:test :test-not) (while (and cl-list1 - (apply 'member* (cl-check-key (car cl-list1)) + (apply 'cl-member (cl-check-key (car cl-list1)) cl-list2 cl-keys)) (pop cl-list1)) (null cl-list1))))) ;;;###autoload -(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-subst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all matching elements replaced by NEW. \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) + (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) ;;;###autoload -(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-subst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elts not matching PREDICATE in TREE (non-destructively). Return a copy of TREE with all non-matching elements replaced by NEW. \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + (apply 'cl-sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) ;;;###autoload -(defun nsubst (cl-new cl-old cl-tree &rest cl-keys) +(defun cl-nsubst (cl-new cl-old cl-tree &rest cl-keys) "Substitute NEW for OLD everywhere in TREE (destructively). Any element of TREE which is `eql' to OLD is changed to NEW (via a call to `setcar'). \nKeywords supported: :test :test-not :key \n(fn NEW OLD TREE [KEYWORD VALUE]...)" - (apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) + (apply 'cl-nsublis (list (cons cl-old cl-new)) cl-tree cl-keys)) ;;;###autoload -(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-nsubst-if (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) + (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys)) ;;;###autoload -(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) +(defun cl-nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys) "Substitute NEW for elements not matching PREDICATE in TREE (destructively). Any element of TREE which matches is changed to NEW (via a call to `setcar'). \nKeywords supported: :key \n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" - (apply 'nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) + (apply 'cl-nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys)) ;;;###autoload -(defun sublis (cl-alist cl-tree &rest cl-keys) +(defun cl-sublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (non-destructively). Return a copy of TREE with all matching elements replaced. \nKeywords supported: :test :test-not :key @@ -969,7 +969,7 @@ Return a copy of TREE with all matching elements replaced. cl-tree)))) ;;;###autoload -(defun nsublis (cl-alist cl-tree &rest cl-keys) +(defun cl-nsublis (cl-alist cl-tree &rest cl-keys) "Perform substitutions indicated by ALIST in TREE (destructively). Any matching element of TREE is changed via a call to `setcar'. \nKeywords supported: :test :test-not :key @@ -994,7 +994,7 @@ Any matching element of TREE is changed via a call to `setcar'. (setq cl-tree (cdr cl-tree)))))) ;;;###autoload -(defun tree-equal (cl-x cl-y &rest cl-keys) +(defun cl-tree-equal (cl-x cl-y &rest cl-keys) "Return t if trees TREE1 and TREE2 have `eql' leaves. Atoms are compared by `eql'; cons cells are compared recursively. \nKeywords supported: :test :test-not :key |