1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
|
@c -*- mode: texinfo; coding: utf-8 -*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 2021 Free Software Foundation, Inc.
@c See the file elisp.texi for copying conditions.
@node Parsing Program Source
@chapter Parsing Program Source
Emacs provides various ways to parse program source text and produce a
@dfn{syntax tree}. In a syntax tree, text is no longer a
one-dimensional stream but a structured tree of nodes, where each node
representing a piece of text. Thus a syntax tree can enable
interesting features like precise fontification, indentation,
navigation, structured editing, etc.
Emacs has a simple facility for parsing balanced expressions
(@pxref{Parsing Expressions}). There is also SMIE library for generic
navigation and indentation (@pxref{SMIE}).
Emacs also provides integration with tree-sitter library
(@uref{https://tree-sitter.github.io/tree-sitter}) if compiled with
it. The tree-sitter library implements an incremental parser and has
support from a wide range of programming languages.
@defun treesit-available-p
This function returns non-nil if tree-sitter features are available
for this Emacs instance.
@end defun
For tree-sitter integration with existing Emacs features,
@pxref{Parser-based Font Lock}, @ref{Parser-based Indentation}, and
@ref{List Motion}.
To access the syntax tree of the text in a buffer, we need to first
load a language definition and create a parser with it. Next, we can
query the parser for specific nodes in the syntax tree. Then, we can
access various information about the node, and we can pattern-match a
node with a powerful syntax. Finally, we explain how to work with
source files that mixes multiple languages. The following sections
explain how to do each of the tasks in detail.
@menu
* Language Definitions:: Loading tree-sitter language definitions.
* Using Parser:: Introduction to parsers.
* Retrieving Node:: Retrieving node from syntax tree.
* Accessing Node:: Accessing node information.
* Pattern Matching:: Pattern matching with query patterns.
* Multiple Languages:: Parse text written in multiple languages.
* Tree-sitter C API:: Compare the C API and the ELisp API.
@end menu
@node Language Definitions
@section Tree-sitter Language Definitions
@heading Loading a language definition
Tree-sitter relies on language definitions to parse text in that
language. In Emacs, A language definition is represented by a symbol.
For example, C language definition is represented as @code{c}, and
@code{c} can be passed to tree-sitter functions as the @var{language}
argument.
@vindex treesit-extra-load-path
@vindex treesit-load-language-error
@vindex treesit-load-suffixes
Tree-sitter language definitions are distributed as dynamic libraries.
In order to use a language definition in Emacs, you need to make sure
that the dynamic library is installed on the system. Emacs looks for
language definitions under load paths in
@var{treesit-extra-load-path}, @var{user-emacs-directory}/tree-sitter,
and system default locations for dynamic libraries, in that order.
Emacs tries each extensions in @var{treesit-load-suffixes}. If Emacs
cannot find the library or has problem loading it, Emacs signals
@var{treesit-load-language-error}. The signal data is a list of
specific error messages.
@defun treesit-language-available-p language
This function checks whether the dynamic library for @var{language} is
present on the system, and return non-nil if it is.
@end defun
@vindex treesit-load-name-override-list
By convention, the dynamic library for @var{language} is
@code{libtree-sitter-@var{language}.@var{ext}}, where @var{ext} is the
system-specific extension for dynamic libraries. Also by convention,
the function provided by that library is named
@code{tree_sitter_<language>}. If a language definition doesn't
follow this convention, you should add an entry
@example
(@var{language} @var{library-base-name} @var{function-name})
@end example
to @var{treesit-load-name-override-list}, where
@var{library-base-name} is the base filename for the dynamic library
(conventionally @code{libtree-sitter-@var{language}}), and
@var{function-name} is the function provided by the library
(conventionally @code{tree_sitter_@var{language}}). For example,
@example
(cool-lang "libtree-sitter-coool" "tree_sitter_cooool")
@end example
for a language too cool to abide by the rules.
@heading Concrete syntax tree
A syntax tree is what a language definition defines (more or less) and
what a parser generates. In a syntax tree, each node represents a
piece of text, and is connected to each other by a parent-child
relationship. For example, if the source text is
@example
1 + 2
@end example
@noindent
its syntax tree could be
@example
@group
+--------------+
| root "1 + 2" |
+--------------+
|
+--------------------------------+
| expression "1 + 2" |
+--------------------------------+
| | |
+------------+ +--------------+ +------------+
| number "1" | | operator "+" | | number "2" |
+------------+ +--------------+ +------------+
@end group
@end example
We can also represent it in s-expression:
@example
(root (expression (number) (operator) (number)))
@end example
@subheading Node types
@cindex tree-sitter node type
@anchor{tree-sitter node type}
@cindex tree-sitter named node
@anchor{tree-sitter named node}
@cindex tree-sitter anonymous node
Names like @code{root}, @code{expression}, @code{number},
@code{operator} are nodes' @dfn{type}. However, not all nodes in a
syntax tree have a type. Nodes that don't are @dfn{anonymous nodes},
and nodes with a type are @dfn{named nodes}. Anonymous nodes are
tokens with fixed spellings, including punctuation characters like
bracket @samp{]}, and keywords like @code{return}.
@subheading Field names
@cindex tree-sitter node field name
@anchor{tree-sitter node field name} To make the syntax tree easier to
analyze, many language definitions assign @dfn{field names} to child
nodes. For example, a @code{function_definition} node could have a
@code{declarator} and a @code{body}:
@example
@group
(function_definition
declarator: (declaration)
body: (compound_statement))
@end group
@end example
@deffn Command treesit-inspect-mode
This minor mode displays the node that @emph{starts} at point in
mode-line. The mode-line will display
@example
@var{parent} @var{field-name}: (@var{child} (@var{grand-child} (...)))
@end example
@var{child}, @var{grand-child}, and @var{grand-grand-child}, etc, are
nodes that have their beginning at point. And @var{parent} is the
parent of @var{child}.
If there is no node that starts at point, i.e., point is in the middle
of a node, then the mode-line only displays the smallest node that
spans point, and its immediate parent.
This minor mode doesn't create parsers on its own. It simply uses the
first parser in @code{(treesit-parser-list)} (@pxref{Using Parser}).
@end deffn
@heading Reading the grammar definition
Authors of language definitions define the @dfn{grammar} of a
language, and this grammar determines how does a parser construct a
concrete syntax tree out of the text. In order to used the syntax
tree effectively, we need to read the @dfn{grammar file}.
The grammar file is usually @code{grammar.js} in a language
definition’s project repository. The link to a language definition’s
home page can be found in tree-sitter’s homepage
(@uref{https://tree-sitter.github.io/tree-sitter}).
The grammar is written in JavaScript syntax. For example, the rule
matching a @code{function_definition} node looks like
@example
@group
function_definition: $ => seq(
$.declaration_specifiers,
field('declarator', $.declaration),
field('body', $.compound_statement)
)
@end group
@end example
The rule is represented by a function that takes a single argument
@var{$}, representing the whole grammar. The function itself is
constructed by other functions: the @code{seq} function puts together a
sequence of children; the @code{field} function annotates a child with
a field name. If we write the above definition in BNF syntax, it
would look like
@example
@group
function_definition :=
<declaration_specifiers> <declaration> <compound_statement>
@end group
@end example
@noindent
and the node returned by the parser would look like
@example
@group
(function_definition
(declaration_specifier)
declarator: (declaration)
body: (compound_statement))
@end group
@end example
Below is a list of functions that one will see in a grammar
definition. Each function takes other rules as arguments and returns
a new rule.
@itemize @bullet
@item
@code{seq(rule1, rule2, ...)} matches each rule one after another.
@item
@code{choice(rule1, rule2, ...)} matches one of the rules in its
arguments.
@item
@code{repeat(rule)} matches @var{rule} for @emph{zero or more} times.
This is like the @samp{*} operator in regular expressions.
@item
@code{repeat1(rule)} matches @var{rule} for @emph{one or more} times.
This is like the @samp{+} operator in regular expressions.
@item
@code{optional(rule)} matches @var{rule} for @emph{zero or one} time.
This is like the @samp{?} operator in regular expressions.
@item
@code{field(name, rule)} assigns field name @var{name} to the child
node matched by @var{rule}.
@item
@code{alias(rule, alias)} makes nodes matched by @var{rule} appear as
@var{alias} in the syntax tree generated by the parser. For example,
@example
alias(preprocessor_call_exp, call_expression)
@end example
makes any node matched by @code{preprocessor_call_exp} to appear as
@code{call_expression}.
@end itemize
Below are grammar functions less interesting for a reader of a
language definition.
@itemize
@item
@code{token(rule)} marks @var{rule} to produce a single leaf node.
That is, instead of generating a parent node with individual child
nodes under it, everything is combined into a single leaf node.
@item
Normally, grammar rules ignore preceding whitespaces,
@code{token.immediate(rule)} changes @var{rule} to match only when
there is no preceding whitespaces.
@item
@code{prec(n, rule)} gives @var{rule} a level @var{n} precedence.
@item
@code{prec.left([n,] rule)} marks @var{rule} as left-associative,
optionally with level @var{n}.
@item
@code{prec.right([n,] rule)} marks @var{rule} as right-associative,
optionally with level @var{n}.
@item
@code{prec.dynamic(n, rule)} is like @code{prec}, but the precedence
is applied at runtime instead.
@end itemize
The tree-sitter project talks about writing a grammar in more detail:
@uref{https://tree-sitter.github.io/tree-sitter/creating-parsers}.
Read especially ``The Grammar DSL'' section.
@node Using Parser
@section Using Tree-sitter Parser
@cindex Tree-sitter parser
This section described how to create and configure a tree-sitter
parser. In Emacs, each tree-sitter parser is associated with a
buffer. As we edit the buffer, the associated parser is automatically
kept up-to-date.
@defvar treesit-max-buffer-size
This variable contains the maximum size of buffers in which
tree-sitter can be activated. Major modes should check this value
when deciding whether to enable tree-sitter features.
@end defvar
@defun treesit-can-enable-p
This function checks whether the current buffer is suitable for
activating tree-sitter features. It basically checks
@code{treesit-available-p} and @var{treesit-max-buffer-size}.
@end defun
@cindex Creating tree-sitter parsers
@defun treesit-parser-create language &optional buffer no-reuse
To create a parser, we provide a @var{buffer} to keep track of and the
@var{language} to use (@pxref{Language Definitions}). If @var{buffer}
is nil, the current buffer is used.
By default, this function reuses a parser if one already exists for
@var{language} in @var{buffer}, if @var{no-reuse} is non-nil, this
function always creates a new parser.
@end defun
Given a parser, we can query information about it:
@defun treesit-parser-buffer parser
Returns the buffer associated with @var{parser}.
@end defun
@defun treesit-parser-language parser
Returns the language that @var{parser} uses.
@end defun
@defun treesit-parser-p object
Checks if @var{object} is a tree-sitter parser. Return non-nil if it
is, return nil otherwise.
@end defun
There is no need to explicitly parse a buffer, because parsing is done
automatically and lazily. A parser only parses when we query for a
node in its syntax tree. Therefore, when a parser is first created,
it doesn't parse the buffer; instead, it waits until we query for a
node for the first time. Similarly, when some change is made in the
buffer, a parser doesn't re-parse immediately and only records some
necessary information to later re-parse when necessary.
@vindex treesit-buffer-too-large
When a parser do parse, it checks for the size of the buffer.
Tree-sitter can only handle buffer no larger than about 4GB. If the
size exceeds that, Emacs signals @var{treesit-buffer-too-large}
with signal data being the buffer size.
Once a parser is created, Emacs automatically adds it to the
internal parser list. Every time a change is made to the buffer,
Emacs updates parsers in this list so they can update their syntax
tree incrementally.
@defun treesit-parser-list &optional buffer
This function returns the parser list of @var{buffer}. And
@var{buffer} defaults to the current buffer.
@end defun
@defun treesit-parser-delete parser
This function deletes @var{parser}.
@end defun
@cindex tree-sitter narrowing
@anchor{tree-sitter narrowing} Normally, a parser ``sees'' the whole
buffer, but when the buffer is narrowed (@pxref{Narrowing}), the
parser will only see the visible region. As far as the parser can
tell, the hidden region is deleted. And when the buffer is later
widened, the parser thinks text is inserted in the beginning and in
the end. Although parsers respect narrowing, narrowing shouldn't be
the mean to handle a multi-language buffer; instead, set the ranges in
which a parser should operate in. @xref{Multiple Languages}.
Because a parser parses lazily, when we narrow the buffer, the parser
is not affected immediately; as long as we don't query for a node
while the buffer is narrowed, the parser is oblivious of the
narrowing.
@cindex tree-sitter parse string
@defun treesit-parse-string string language
Besides creating a parser for a buffer, we can also just parse a
string. Unlike a buffer, parsing a string is a one-time deal, and
there is no way to update the result.
This function parses @var{string} with @var{language}, and returns the
root node of the generated syntax tree.
@end defun
@node Retrieving Node
@section Retrieving Node
@cindex tree-sitter find node
@cindex tree-sitter get node
There are two ways to retrieve a node: directly from the syntax tree,
or by traveling from other nodes. But before we continue, lets go
over some conventions of tree-sitter functions.
We talk about a node being ``smaller'' or ``larger'', and ``lower'' or
``higher''. A smaller and lower node is lower in the syntax tree and
therefore spans a smaller piece of text; a larger and higher node is
higher up in the syntax tree, containing many smaller nodes as its
children, and therefore spans a larger piece of text.
When a function cannot find a node, it returns nil. And for the
convenience for function chaining, all the functions that take a node
as argument and returns a node accept the node to be nil; in that
case, the function just returns nil.
@vindex treesit-node-outdated
Nodes are not automatically updated when the associated buffer is
modified. In fact, there is no way to update a node once it is
retrieved. It is best to use a node and throw it away and not save
it. A node is @dfn{outdated} if the buffer has changed since the node
is retrieved. Using an outdated node throws
@var{treesit-node-outdated} error.
@heading Retrieving node from syntax tree
@defun treesit-node-at beg end &optional parser-or-lang named
This function returns the @emph{smallest} node that starts at or after
the @var{point}. In other words, the start of the node is equal or
greater than @var{point}.
When @var{parser-or-lang} is nil, this function uses the first parser
in @code{(treesit-parser-list)} in the current buffer. If
@var{parser-or-lang} is a parser object, it use that parser; if
@var{parser-or-lang} is a language, it finds the first parser using
that language in @code{(treesit-parser-list)} and use that.
If @var{named} is non-nil, this function looks for a named node
instead (@pxref{tree-sitter named node, named node}).
@example
@group
;; Find the node at point in a C parser's syntax tree.
(treesit-node-on (point) 'c)
@c @result{} #<treesit-node from 1 to 4 in *scratch*>
@end group
@end example
@end defun
@defun treesit-node-on beg end &optional parser-or-lang named
This function returns the @emph{smallest} node that covers the span
from @var{beg} to @var{end}. In other words, the start of the node is
less or equal to @var{beg}, and the end of the node is greater or
equal to @var{end}.
@emph{Beware}, Calling this function on an empty line that is not
inside any top-level construct (function definition, etc) most
probably will give you the root node, because the root node is the
smallest node that covers that empty line. You probably want to use
@code{treesit-node-at} instead.
When @var{parser-or-lang} is nil, this function uses the first parser
in @code{(treesit-parser-list)} in the current buffer. If
@var{parser-or-lang} is a parser object, it use that parser; if
@var{parser-or-lang} is a language, it finds the first parser using
that language in @code{(treesit-parser-list)} and use that.
If @var{named} is non-nil, this function looks for a named node
instead (@pxref{tree-sitter named node, named node}).
@end defun
@defun treesit-parser-root-node parser
This function returns the root node of the syntax tree generated by
@var{parser}.
@end defun
@defun treesit-buffer-root-node &optional language
This function finds the first parser that uses @var{language} in
@code{(treesit-parser-list)} in the current buffer, and returns the
root node of that buffer. If it cannot find an appropriate parser, it
returns nil.
@end defun
Once we have a node, we can retrieve other nodes from it, or query for
information about this node.
@heading Retrieving node from other nodes
@subheading By kinship
@defun treesit-node-parent node
This function returns the immediate parent of @var{node}.
@end defun
@defun treesit-node-child node n &optional named
This function returns the @var{n}'th child of @var{node}. If
@var{named} is non-nil, then it only counts named nodes
(@pxref{tree-sitter named node, named node}). For example, in a node
that represents a string: @code{"text"}, there are three children
nodes: the opening quote @code{"}, the string content @code{text}, and
the enclosing quote @code{"}. Among these nodes, the first child is
the opening quote @code{"}, the first named child is the string
content @code{text}.
@end defun
@defun treesit-node-children node &optional named
This function returns all of @var{node}'s children in a list. If
@var{named} is non-nil, then it only retrieves named nodes
(@pxref{tree-sitter named node, named node}).
@end defun
@defun treesit-next-sibling node &optional named
This function finds the next sibling of @var{node}. If @var{named} is
non-nil, it finds the next named sibling (@pxref{tree-sitter named
node, named node}).
@end defun
@defun treesit-prev-sibling node &optional named
This function finds the previous sibling of @var{node}. If
@var{named} is non-nil, it finds the previous named sibling
(@pxref{tree-sitter named node, named node}).
@end defun
@subheading By field name
To make the syntax tree easier to analyze, many language definitions
assign @dfn{field names} to child nodes (@pxref{tree-sitter node field
name, field name}). For example, a @code{function_definition} node
could have a @code{declarator} and a @code{body}.
@defun treesit-child-by-field-name node field-name
This function finds the child of @var{node} that has @var{field-name}
as its field name.
@example
@group
;; Get the child that has "body" as its field name.
(treesit-child-by-field-name node "body")
@c @result{} #<treesit-node from 3 to 11 in *scratch*>
@end group
@end example
@end defun
@subheading By position
@defun treesit-first-child-for-pos node pos &optional named
This function finds the first child of @var{node} that extends beyond
@var{pos}. ``Extend beyond'' means the end of the child node
@code{>=} @var{pos}. This function only looks for immediate children of
@var{node}, and doesn't look in its grand children. If @var{named} is
non-nil, it only looks for named child (@pxref{tree-sitter named node,
named node}).
@end defun
@defun treesit-node-descendant-for-range node beg end &optional named
This function finds the @emph{smallest} (grand)child of @var{node}
that spans the range from @var{beg} to @var{end}. It is similar to
@code{treesit-node-at}. If @var{named} is non-nil, it only looks
for named child (@pxref{tree-sitter named node, named node}).
@end defun
@heading Searching for node
@defun treesit-search-beginning query arg &optional lang up-only
This function searches for the next node that @var{query} captures,
starting at point. Use the parser in current buffer that has
@var{lang} as its language, if @var{lang} is nil, use the first parser
in current buffer’s buffer list.
This function stops at the @var{arg}'th match. If @var{arg} is
negative, search backward. If the search succeeds, stop at the
beginning of the matched node and return the node. Return nil if
search failed.
By default, this function searches by traversing the parse tree depth
first, starting from the node at point. If @var{up-only} is non-nil,
this function only go to siblings and parents, but never go down into
children nodes.
@end defun
@defun treesit-search-end query arg &optional lang up-only
This function is like @code{treesit-search-beginning}, but stops at
the end of the matched node.
@end defun
@defun treesit-search-forward pos-fn arg query &optional lang up-only
This function is like @code{treesit-search-beginning} and
@code{treesit-search-end}, but instead of stopping at the beginning or
end of the matched node, it determines where to stop by @var{pos-fn},
where @var{pos-fn} is a function that takes a node and returns a
position
@end defun
@heading More convenient functions
@defun treesit-filter-child node pred &optional named
This function finds children of @var{node} that satisfies @var{pred}.
Function @var{pred} takes the child node as the argument and should
return non-nil to indicated keeping the child. If @var{named}
non-nil, this function only searches for named nodes.
@end defun
@defun treesit-parent-until node pred
This function repeatedly finds the parent of @var{node}, and returns
the parent if it satisfies @var{pred} (which takes the parent as the
argument). If no parent satisfies @var{pred}, this function returns
nil.
@end defun
@defun treesit-parent-while
This function repeatedly finds the parent of @var{node}, and keeps
doing so as long as the parent satisfies @var{pred} (which takes the
parent as the single argument). I.e., this function returns the
farthest parent that still satisfies @var{pred}.
@end defun
@cindex trees-sitter tree traversal
@defun treesit-traverse-depth-first node pred &optional step depth
Traverse the subtree of @var{node} depth-first. Traverse starting from
@var{node} (i.e., @var{node} is passed to @var{pred}). For each node
traversed, we call @var{pred} with the node, and we stop and return
the node if @var{pred} returns non-nil. If no node satisfies
@var{pred}, return nil.
If @var{step} >= 0 or nil, go forward, if @var{step} < 0, go backward.
(The quantity of @var{step} doesn't matter.)
@var{depth} can be a positive integer or 0, meaning go @var{depth}
levels deep, counting from @var{node}, or nil, meaning there is no
limit. For example, a value 0 means only traverse @var{node} itself,
a value 1 means traverse @var{node} and its immediate children.
@end defun
@defun treesit-traverse-breadth-first node pred &optional step
Traverse the subtree of @var{node} breadth-first. Traverse starting
from @var{node} (i.e., @var{node} is passed to @var{pred}). For each
node traversed, call @var{pred} with the node, stop and return the
node if @var{pred} returns non-nil. If no node satisfies @var{pred},
return nil.
If @var{step} >= 0 or nil, go forward, if @var{step} < 0, go backward.
(The quantity of @var{step} doesn't matter.)
@end defun
@defun treesit-traverse-forward node pred &optional step depth
Traverses the whole tree forward from NODE depth-first. Traverse
starting from @var{node} (i.e., @var{node} is passed to @var{pred}).
For each node traversed, call @var{pred} with the node, stop and
return the node if @var{pred} returns non-nil. If no node satisfies
@var{pred}, return nil.
If @var{step} >= 0 or nil, go forward, if @var{step} < 0, go backward.
(The quantity of @var{step} doesn't matter.)
Traversing forward means that for a tree like the below where
@var{node} is marked 1, traverse as numbered:
@example
@group
16
|
3--------4-----------8
| | |
o--o-+--1 5--+--6 9---+-----12
| | | | | |
o o 2 7 +-+-+ +--+--+
| | | | |
10 11 13 14 15
@end group
@end example
@var{depth} can be a positive integer, 0, nil, or @code{'up}. A
positive integer or 0 means go @var{depth} deep counting from
@var{node}. A nil means no limit. And a symbol @code{'up} means go
upwards only: only traverse to sibling and parent, never go down to
children.
The difference between 0 and @code{'up} is subtle: in the above
example, if given 0 as @var{depth}, node 1 3 4 5 6 8 9 12 16 are
visited; if given @code{'up} as @var{depth}, only node 1 3 4 8 16 are
visited.
@end defun
@node Accessing Node
@section Accessing Node Information
Before going further, make sure you have read the basic conventions
about tree-sitter nodes in the previous node.
@heading Basic information
Every node is associated with a parser, and that parser is associated
with a buffer. The following functions let you retrieve them.
@defun treesit-node-parser node
This function returns @var{node}'s associated parser.
@end defun
@defun treesit-node-buffer node
This function returns @var{node}'s parser's associated buffer.
@end defun
@defun treesit-node-language node
This function returns @var{node}'s parser's associated language.
@end defun
Each node represents a piece of text in the buffer. Functions below
finds relevant information about that text.
@defun treesit-node-start node
Return the start position of @var{node}.
@end defun
@defun treesit-node-end node
Return the end position of @var{node}.
@end defun
@defun treesit-node-text node &optional object
Returns the buffer text that @var{node} represents. (If @var{node} is
retrieved from parsing a string, it will be the text from that
string.)
@end defun
Here are some basic checks on tree-sitter nodes.
@defun treesit-node-p object
Checks if @var{object} is a tree-sitter syntax node.
@end defun
@defun treesit-node-eq node1 node2
Checks if @var{node1} and @var{node2} are the same node in a syntax
tree.
@end defun
@heading Property information
In general, nodes in a concrete syntax tree fall into two categories:
@dfn{named nodes} and @dfn{anonymous nodes}. Whether a node is named
or anonymous is determined by the language definition
(@pxref{tree-sitter named node, named node}).
@cindex tree-sitter missing node
Apart from being named/anonymous, a node can have other properties. A
node can be ``missing'': missing nodes are inserted by the parser in
order to recover from certain kinds of syntax errors, i.e., something
should probably be there according to the grammar, but not there.
@cindex tree-sitter extra node
A node can be ``extra'': extra nodes represent things like comments,
which can appear anywhere in the text.
@cindex tree-sitter node that has changes
A node ``has changes'' if the buffer changed since when the node is
retrieved. In this case, the node's start and end position would be
off and we better throw it away and retrieve a new one.
@cindex tree-sitter node that has error
A node ``has error'' if the text it spans contains a syntax error. It
can be the node itself has an error, or one of its (grand)children has
an error.
@defun treesit-node-check node property
This function checks if @var{node} has @var{property}. @var{property}
can be @code{'named}, @code{'missing}, @code{'extra},
@code{'has-changes}, or @code{'has-error}.
@end defun
Named nodes have ``types'' (@pxref{tree-sitter node type, node type}).
For example, a named node can be a @code{string_literal} node, where
@code{string_literal} is its type.
@defun treesit-node-type node
Return @var{node}'s type as a string.
@end defun
@heading Information as a child or parent
@defun treesit-node-index node &optional named
This function returns the index of @var{node} as a child node of its
parent. If @var{named} is non-nil, it only count named nodes
(@pxref{tree-sitter named node, named node}).
@end defun
@defun treesit-node-field-name node
A child of a parent node could have a field name (@pxref{tree-sitter
node field name, field name}). This function returns the field name
of @var{node} as a child of its parent.
@end defun
@defun treesit-node-field-name-for-child node n
This is a more primitive function that returns the field name of the
@var{n}'th child of @var{node}.
@end defun
@defun treesit-child-count node &optional named
This function finds the number of children of @var{node}. If
@var{named} is non-nil, it only counts named child (@pxref{tree-sitter
named node, named node}).
@end defun
@node Pattern Matching
@section Pattern Matching Tree-sitter Nodes
Tree-sitter let us pattern match with a small declarative language.
Pattern matching consists of two steps: first tree-sitter matches a
@dfn{pattern} against nodes in the syntax tree, then it @dfn{captures}
specific nodes in that pattern and returns the captured nodes.
We describe first how to write the most basic query pattern and how to
capture nodes in a pattern, then the pattern-match function, finally
more advanced pattern syntax.
@heading Basic query syntax
@cindex Tree-sitter query syntax
@cindex Tree-sitter query pattern
A @dfn{query} consists of multiple @dfn{patterns}. Each pattern is an
s-expression that matches a certain node in the syntax node. A
pattern has the following shape:
@example
(@var{type} @var{child}...)
@end example
@noindent
For example, a pattern that matches a @code{binary_expression} node that
contains @code{number_literal} child nodes would look like
@example
(binary_expression (number_literal))
@end example
To @dfn{capture} a node in the query pattern above, append
@code{@@capture-name} after the node pattern you want to capture. For
example,
@example
(binary_expression (number_literal) @@number-in-exp)
@end example
@noindent
captures @code{number_literal} nodes that are inside a
@code{binary_expression} node with capture name @code{number-in-exp}.
We can capture the @code{binary_expression} node too, with capture
name @code{biexp}:
@example
(binary_expression
(number_literal) @@number-in-exp) @@biexp
@end example
@heading Query function
Now we can introduce the query functions.
@defun treesit-query-capture node query &optional beg end node-only
This function matches patterns in @var{query} in @var{node}. Argument
@var{query} can be either a string, a s-expression, or a compiled
query object. For now, we focus on the string syntax; s-expression
syntax and compiled query are described at the end of the section.
The function returns all captured nodes in a list of
@code{(@var{capture_name} . @var{node})}. If @var{node-only} is
non-nil, a list of node is returned instead. If @var{beg} and
@var{end} are both non-nil, this function only pattern matches nodes
in that range.
@vindex treesit-query-error
This function raise a @var{treesit-query-error} if @var{query} is
malformed. The signal data contains a description of the specific
error. You can use @code{treesit-query-validate} to debug the query.
@end defun
@defun treesit-query-in source query &optional beg end node-only
This function matches patterns in @var{query} in @var{source}, and
returns all captured nodes in a list of @code{(@var{capture_name}
. @var{node})}. If @var{node-only} is non-nil, a list of node is
returned instead. If @var{beg} and @var{end} are both non-nil, it
only pattern match nodes in that range.
Argument @var{source} designates a node, it can be a language symbol,
a parser, or simply a node. If a language symbol, @var{source}
represents the root node of the first parser for that language in the
current buffer; if a parser, @var{source} represents the root node of
that parser.
This function also raises @var{treesit-query-error}.
@end defun
For example, suppose @var{node}'s content is @code{1 + 2}, and
@var{query} is
@example
@group
(setq query
"(binary_expression
(number_literal) @@number-in-exp) @@biexp")
@end group
@end example
@noindent
Querying that query would return
@example
@group
(treesit-query-capture node query)
@result{} ((biexp . @var{<node for "1 + 2">})
(number-in-exp . @var{<node for "1">})
(number-in-exp . @var{<node for "2">}))
@end group
@end example
As we mentioned earlier, a @var{query} could contain multiple
patterns. For example, it could have two top-level patterns:
@example
@group
(setq query
"(binary_expression) @@biexp
(number_literal) @@number @@biexp")
@end group
@end example
@defun treesit-query-string string query language
This function parses @var{string} with @var{language}, pattern matches
its root node with @var{query}, and returns the result.
@end defun
@heading More query syntax
Besides node type and capture, tree-sitter's query syntax can express
anonymous node, field name, wildcard, quantification, grouping,
alternation, anchor, and predicate.
@subheading Anonymous node
An anonymous node is written verbatim, surrounded by quotes. A
pattern matching (and capturing) keyword @code{return} would be
@example
"return" @@keyword
@end example
@subheading Wild card
In a query pattern, @samp{(_)} matches any named node, and @samp{_}
matches any named and anonymous node. For example, to capture any
named child of a @code{binary_expression} node, the pattern would be
@example
(binary_expression (_) @@in_biexp)
@end example
@subheading Field name
We can capture child nodes that has specific field names:
@example
@group
(function_definition
declarator: (_) @@func-declarator
body: (_) @@func-body)
@end group
@end example
We can also capture a node that doesn't have certain field, say, a
@code{function_definition} without a @code{body} field.
@example
(function_definition !body) @@func-no-body
@end example
@subheading Quantify node
Tree-sitter recognizes quantification operators @samp{*}, @samp{+} and
@samp{?}. Their meanings are the same as in regular expressions:
@samp{*} matches the preceding pattern zero or more times, @samp{+}
matches one or more times, and @samp{?} matches zero or one time.
For example, this pattern matches @code{type_declaration} nodes
that has @emph{zero or more} @code{long} keyword.
@example
(type_declaration "long"* @@long-in-type)
@end example
@noindent
And this pattern matches a type declaration that has zero or one
@code{long} keyword:
@example
(type_declaration "long"?) @@type-decl
@end example
@subheading Grouping
Similar to groups in regular expression, we can bundle patterns into a
group and apply quantification operators to it. For example, to
express a comma separated list of identifiers, one could write
@example
(identifier) ("," (identifier))*
@end example
@subheading Alternation
Again, similar to regular expressions, we can express ``match anyone
from this group of patterns'' in the query pattern. The syntax is a
list of patterns enclosed in square brackets. For example, to capture
some keywords in C, the query pattern would be
@example
@group
[
"return"
"break"
"if"
"else"
] @@keyword
@end group
@end example
@subheading Anchor
The anchor operator @samp{.} can be used to enforce juxtaposition,
i.e., to enforce two things to be directly next to each other. The
two ``things'' can be two nodes, or a child and the end of its parent.
For example, to capture the first child, the last child, or two
adjacent children:
@example
@group
;; Anchor the child with the end of its parent.
(compound_expression (_) @@last-child .)
;; Anchor the child with the beginning of its parent.
(compound_expression . (_) @@first-child)
;; Anchor two adjacent children.
(compound_expression
(_) @@prev-child
.
(_) @@next-child)
@end group
@end example
Note that the enforcement of juxtaposition ignores any anonymous
nodes.
@subheading Predicate
We can add predicate constraints to a pattern. For example, if we use
the following query pattern
@example
@group
(
(array . (_) @@first (_) @@last .)
(#equal @@first @@last)
)
@end group
@end example
Then tree-sitter only matches arrays where the first element equals to
the last element. To attach a predicate to a pattern, we need to
group then together. A predicate always starts with a @samp{#}.
Currently there are two predicates, @code{#equal} and @code{#match}.
@deffn Predicate equal arg1 arg2
Matches if @var{arg1} equals to @var{arg2}. Arguments can be either a
string or a capture name. Capture names represent the text that the
captured node spans in the buffer.
@end deffn
@deffn Predicate match regexp capture-name
Matches if the text that @var{capture-name}’s node spans in the buffer
matches regular expression @var{regexp}. Matching is case-sensitive.
@end deffn
Note that a predicate can only refer to capture names appeared in the
same pattern. Indeed, it makes little sense to refer to capture names
in other patterns anyway.
@heading S-expression patterns
Besides strings, Emacs provides a s-expression based syntax for query
patterns. It largely resembles the string-based syntax. For example,
the following pattern
@example
@group
(treesit-query-capture
node "(addition_expression
left: (_) @@left
\"+\" @@plus-sign
right: (_) @@right) @@addition
[\"return\" \"break\"] @@keyword")
@end group
@end example
@noindent
is equivalent to
@example
@group
(treesit-query-capture
node '((addition_expression
left: (_) @@left
"+" @@plus-sign
right: (_) @@right) @@addition
["return" "break"] @@keyword))
@end group
@end example
Most pattern syntax can be written directly as strange but
never-the-less valid s-expressions. Only a few of them needs
modification:
@itemize
@item
Anchor @samp{.} is written as @code{:anchor}.
@item
@samp{?} is written as @samp{:?}.
@item
@samp{*} is written as @samp{:*}.
@item
@samp{+} is written as @samp{:+}.
@item
@code{#equal} is written as @code{:equal}. In general, predicates
change their @samp{#} to @samp{:}.
@end itemize
For example,
@example
@group
"(
(compound_expression . (_) @@first (_)* @@rest)
(#match \"love\" @@first)
)"
@end group
@end example
is written in s-expression as
@example
@group
'((
(compound_expression :anchor (_) @@first (_) :* @@rest)
(:match "love" @@first)
))
@end group
@end example
@heading Compiling queries
If a query will be used repeatedly, especially in tight loops, it is
important to compile that query, because a compiled query is much
faster than an uncompiled one. A compiled query can be used anywhere
a query is accepted.
@defun treesit-query-compile language query
This function compiles @var{query} for @var{language} into a compiled
query object and returns it.
This function raise a @var{treesit-query-error} if @var{query} is
malformed. The signal data contains a description of the specific
error. You can use @code{treesit-query-validate} to debug the query.
@end defun
@defun treesit-expand-query query
This function expands the s-expression @var{query} into a string
query.
@end defun
@defun treesit-expand-pattern pattern
This function expands the s-expression @var{pattern} into a string
pattern.
@end defun
Finally, tree-sitter project's documentation about
pattern-matching can be found at
@uref{https://tree-sitter.github.io/tree-sitter/using-parsers#pattern-matching-with-queries}.
@node Multiple Languages
@section Parsing Text in Multiple Languages
Sometimes, the source of a programming language could contain sources
of other languages, HTML + CSS + JavaScript is one example. In that
case, we need to assign individual parsers to text segments written in
different languages. Traditionally this is achieved by using
narrowing. While tree-sitter works with narrowing (@pxref{tree-sitter
narrowing, narrowing}), the recommended way is to set ranges in which
a parser will operate.
@defun treesit-parser-set-included-ranges parser ranges
This function sets the range of @var{parser} to @var{ranges}. Then
@var{parser} will only read the text covered in each range. Each
range in @var{ranges} is a list of cons @code{(@var{beg}
. @var{end})}.
Each range in @var{ranges} must come in order and not overlap. That
is, in pseudo code:
@example
@group
(cl-loop for idx from 1 to (1- (length ranges))
for prev = (nth (1- idx) ranges)
for next = (nth idx ranges)
should (<= (car prev) (cdr prev)
(car next) (cdr next)))
@end group
@end example
@vindex treesit-range-invalid
If @var{ranges} violates this constraint, or something else went
wrong, this function signals a @var{treesit-range-invalid}. The
signal data contains a specific error message and the ranges we are
trying to set.
This function can also be used for disabling ranges. If @var{ranges}
is nil, the parser is set to parse the whole buffer.
Example:
@example
@group
(treesit-parser-set-included-ranges
parser '((1 . 9) (16 . 24) (24 . 25)))
@end group
@end example
@end defun
@defun treesit-parser-included-ranges parser
This function returns the ranges set for @var{parser}. The return
value is the same as the @var{ranges} argument of
@code{treesit-parser-included-ranges}: a list of cons
@code{(@var{beg} . @var{end})}. And if @var{parser} doesn't have any
ranges, the return value is nil.
@example
@group
(treesit-parser-included-ranges parser)
@result{} ((1 . 9) (16 . 24) (24 . 25))
@end group
@end example
@end defun
@defun treesit-set-ranges parser-or-lang ranges
Like @code{treesit-parser-set-included-ranges}, this function sets
the ranges of @var{parser-or-lang} to @var{ranges}. Conveniently,
@var{parser-or-lang} could be either a parser or a language. If it is
a language, this function looks for the first parser in
@code{(treesit-parser-list)} for that language in the current buffer,
and set range for it.
@end defun
@defun treesit-get-ranges parser-or-lang
This function returns the ranges of @var{parser-or-lang}, like
@code{treesit-parser-included-ranges}. And like
@code{treesit-set-ranges}, @var{parser-or-lang} can be a parser or
a language symbol.
@end defun
@defun treesit-query-range source pattern &optional beg end
This function matches @var{source} with @var{pattern} and returns the
ranges of captured nodes. The return value has the same shape of
other functions: a list of @code{(@var{beg} . @var{end})}.
For convenience, @var{source} can be a language symbol, a parser, or a
node. If a language symbol, this function matches in the root node of
the first parser using that language; if a parser, this function
matches in the root node of that parser; if a node, this function
matches in that node.
Parameter @var{pattern} is the query pattern used to capture nodes
(@pxref{Pattern Matching}). The capture names don't matter. Parameter
@var{beg} and @var{end}, if both non-nil, limits the range in which
this function queries.
Like other query functions, this function raises an
@var{treesit-query-error} if @var{pattern} is malformed.
@end defun
@defun treesit-language-at point
This function tries to figure out which language is responsible for
the text at @var{point}. It goes over each parser in
@code{(treesit-parser-list)} and see if that parser's range covers
@var{point}.
@end defun
@defvar treesit-range-functions
A list of range functions. Font-locking and indenting code uses
functions in this alist to set correct ranges for a language parser
before using it.
The signature of each function should be
@example
(@var{start} @var{end} &rest @var{_})
@end example
where @var{start} and @var{end} marks the region that is about to be
used. A range function only need to (but not limited to) update
ranges in that region.
Each function in the list is called in-order.
@end defvar
@defun treesit-update-ranges &optional start end
This function is used by font-lock and indent to update ranges before
using any parser. Each range function in
@var{treesit-range-functions} is called in-order. Arguments
@var{start} and @var{end} are passed to each range function.
@end defun
@heading An example
Normally, in a set of languages that can be mixed together, there is a
major language and several embedded languages. The major language
parses the whole document, and skips the embedded languages. Then the
parser for the major language knows the ranges of the embedded
languages. So we first parse the whole document with the major
language’s parser, set ranges for the embedded languages, then parse
the embedded languages.
Suppose we want to parse a very simple document that mixes HTML, CSS
and JavaScript:
@example
@group
<html>
<script>1 + 2</script>
<style>body @{ color: "blue"; @}</style>
</html>
@end group
@end example
We first parse with HTML, then set ranges for CSS and JavaScript:
@example
@group
;; Create parsers.
(setq html (treesit-get-parser-create 'html))
(setq css (treesit-get-parser-create 'css))
(setq js (treesit-get-parser-create 'javascript))
;; Set CSS ranges.
(setq css-range
(treesit-query-range
'html
"(style_element (raw_text) @@capture)"))
(treesit-parser-set-included-ranges css css-range)
;; Set JavaScript ranges.
(setq js-range
(treesit-query-range
'html
"(script_element (raw_text) @@capture)"))
(treesit-parser-set-included-ranges js js-range)
@end group
@end example
We use a query pattern @code{(style_element (raw_text) @@capture)} to
find CSS nodes in the HTML parse tree. For how to write query
patterns, @pxref{Pattern Matching}.
@node Tree-sitter C API
@section Tree-sitter C API Correspondence
Emacs' tree-sitter integration doesn't expose every feature
tree-sitter's C API provides. Missing features include:
@itemize
@item
Creating a tree cursor and navigating the syntax tree with it.
@item
Setting timeout and cancellation flag for a parser.
@item
Setting the logger for a parser.
@item
Printing a DOT graph of the syntax tree to a file.
@item
Coping and modifying a syntax tree. (Emacs doesn't expose a tree
object.)
@item
Using (row, column) coordinates as position.
@item
Updating a node with changes. (In Emacs, retrieve a new node instead
of updating the existing one.)
@item
Querying statics of a language definition.
@end itemize
In addition, Emacs makes some changes to the C API to make the API more
convenient and idiomatic:
@itemize
@item
Instead of using byte positions, the ELisp API uses character
positions.
@item
Null nodes are converted to nil.
@end itemize
Below is the correspondence between all C API functions and their
ELisp counterparts. Sometimes one ELisp function corresponds to
multiple C functions, and many C functions don't have an ELisp
counterpart.
@example
ts_parser_new treesit-parser-create
ts_parser_delete
ts_parser_set_language
ts_parser_language treesit-parser-language
ts_parser_set_included_ranges treesit-parser-set-included-ranges
ts_parser_included_ranges treesit-parser-included-ranges
ts_parser_parse
ts_parser_parse_string treesit-parse-string
ts_parser_parse_string_encoding
ts_parser_reset
ts_parser_set_timeout_micros
ts_parser_timeout_micros
ts_parser_set_cancellation_flag
ts_parser_cancellation_flag
ts_parser_set_logger
ts_parser_logger
ts_parser_print_dot_graphs
ts_tree_copy
ts_tree_delete
ts_tree_root_node
ts_tree_language
ts_tree_edit
ts_tree_get_changed_ranges
ts_tree_print_dot_graph
ts_node_type treesit-node-type
ts_node_symbol
ts_node_start_byte treesit-node-start
ts_node_start_point
ts_node_end_byte treesit-node-end
ts_node_end_point
ts_node_string treesit-node-string
ts_node_is_null
ts_node_is_named treesit-node-check
ts_node_is_missing treesit-node-check
ts_node_is_extra treesit-node-check
ts_node_has_changes treesit-node-check
ts_node_has_error treesit-node-check
ts_node_parent treesit-node-parent
ts_node_child treesit-node-child
ts_node_field_name_for_child treesit-node-field-name-for-child
ts_node_child_count treesit-node-child-count
ts_node_named_child treesit-node-child
ts_node_named_child_count treesit-node-child-count
ts_node_child_by_field_name treesit-node-by-field-name
ts_node_child_by_field_id
ts_node_next_sibling treesit-next-sibling
ts_node_prev_sibling treesit-prev-sibling
ts_node_next_named_sibling treesit-next-sibling
ts_node_prev_named_sibling treesit-prev-sibling
ts_node_first_child_for_byte treesit-first-child-for-pos
ts_node_first_named_child_for_byte treesit-first-child-for-pos
ts_node_descendant_for_byte_range treesit-descendant-for-range
ts_node_descendant_for_point_range
ts_node_named_descendant_for_byte_range treesit-descendant-for-range
ts_node_named_descendant_for_point_range
ts_node_edit
ts_node_eq treesit-node-eq
ts_tree_cursor_new
ts_tree_cursor_delete
ts_tree_cursor_reset
ts_tree_cursor_current_node
ts_tree_cursor_current_field_name
ts_tree_cursor_current_field_id
ts_tree_cursor_goto_parent
ts_tree_cursor_goto_next_sibling
ts_tree_cursor_goto_first_child
ts_tree_cursor_goto_first_child_for_byte
ts_tree_cursor_goto_first_child_for_point
ts_tree_cursor_copy
ts_query_new
ts_query_delete
ts_query_pattern_count
ts_query_capture_count
ts_query_string_count
ts_query_start_byte_for_pattern
ts_query_predicates_for_pattern
ts_query_step_is_definite
ts_query_capture_name_for_id
ts_query_string_value_for_id
ts_query_disable_capture
ts_query_disable_pattern
ts_query_cursor_new
ts_query_cursor_delete
ts_query_cursor_exec treesit-query-capture
ts_query_cursor_did_exceed_match_limit
ts_query_cursor_match_limit
ts_query_cursor_set_match_limit
ts_query_cursor_set_byte_range
ts_query_cursor_set_point_range
ts_query_cursor_next_match
ts_query_cursor_remove_match
ts_query_cursor_next_capture
ts_language_symbol_count
ts_language_symbol_name
ts_language_symbol_for_name
ts_language_field_count
ts_language_field_name_for_id
ts_language_field_id_for_name
ts_language_symbol_type
ts_language_version
@end example
|