1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
|
;;; comp.el --- compilation of Lisp code into native code -*- lexical-binding: t -*-
;; Author: Andrea Corallo <akrl@sdf.com>
;; Copyright (C) 2019-2020 Free Software Foundation, Inc.
;; Keywords: lisp
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; This code is an attempt to make the pig fly.
;; Or, to put it another way to make a 911 out of a turbocharged VW Bug.
;;; Code:
(require 'bytecomp)
(require 'cl-extra)
(require 'cl-lib)
(require 'cl-macs)
(require 'gv)
(require 'rx)
(require 'subr-x)
(defgroup comp nil
"Emacs Lisp native compiler."
:group 'lisp)
(defcustom comp-deferred-compilation nil
"If t compile asyncronously all lexically bound .elc files being loaded."
:type 'boolean
:group 'comp)
(defcustom comp-speed 2
"Compiler optimization level. From 0 to 3.
- 0 no optimizations are performed, compile time is favored.
- 1 lite optimizations.
- 2 heavy optimizations.
- 3 max optimization level, to be used only when necessary.
Warning: the compiler is free to perform dangerous optimizations."
:type 'number
:group 'comp)
(defcustom comp-debug 0
"Compiler debug level. From 0 to 3.
This intended for debugging the compiler itself.
- 0 no debug facility.
This is the recommended value unless you are debugging the compiler itself.
- 1 emit debug symbols and dump pseudo C code.
- 2 dump gcc passes and libgccjit log file.
- 3 dump libgccjit reproducers."
:type 'number
:group 'comp)
(defcustom comp-verbose 0
"Compiler verbosity. From 0 to 3.
This intended for debugging the compiler itself.
- 0 no logging.
- 1 final limple is logged.
- 2 LAP and final limple and some pass info are logged.
- 3 max verbosity."
:type 'number
:group 'comp)
(defcustom comp-always-compile nil
"Unconditionally (re-)compile all files."
:type 'boolean
:group 'comp)
(defcustom comp-never-optimize-functions
'(macroexpand scroll-down scroll-up narrow-to-region widen rename-buffer
make-indirect-buffer delete-file top-level abort-recursive-edit)
"Primitive functions for which we do not perform trampoline optimization.
This is especially usefull for primitives known to be advised if bootstrap is
performed at `comp-speed' > 0."
:type 'list
:group 'comp)
(defcustom comp-async-jobs-number 0
"Default number of processes used for async compilation.
When zero use half of the CPUs or at least one."
:type 'fixnum
:group 'comp)
(defcustom comp-async-cu-done-hook nil
"This hook is run whenever an asyncronous native compilation
finishes compiling a single compilation unit.
The argument FILE passed to the function is the filename used as
compilation input."
:type 'hook
:group 'comp)
(defcustom comp-async-all-done-hook nil
"This hook is run whenever the asyncronous native compilation
finishes compiling all input files."
:type 'hook
:group 'comp)
(defvar comp-dry-run nil
"When non nil run everything but the C back-end.")
(defconst comp-log-buffer-name "*Native-compile-Log*"
"Name of the native-compiler log buffer.")
(defconst comp-async-buffer-name "*Async-native-compile-log*"
"Name of the async compilation buffer log.")
(defvar comp-native-compiling nil
"This gets bound to t while native compilation.
Can be used by code that wants to expand differently in this case.")
(defvar comp-pass nil
"Every pass has the right to bind what it likes here.")
(defvar comp-curr-allocation-class 'd-default
"Current allocation class.
Can be one of: 'd-default', 'd-impure' or 'd-ephemeral'. See `comp-ctxt'.")
(defconst comp-passes '(comp-spill-lap
comp-limplify
comp-propagate
comp-call-optim
comp-propagate
comp-dead-code
comp-tco
comp-propagate-alloc
comp-final)
"Passes to be executed in order.")
(defconst comp-known-ret-types '((cons . cons)
(1+ . number)
(1- . number)
(+ . number)
(- . number)
(* . number)
(/ . number)
(% . number)
;; Type hints
(comp-hint-fixnum . fixnum)
(comp-hint-cons . cons))
"Alist used for type propagation.")
(defconst comp-type-hints '(comp-hint-fixnum
comp-hint-cons)
"List of fake functions used to give compiler hints.")
(defconst comp-limple-sets '(set
setimm
set-par-to-local
set-args-to-local
set-rest-args-to-local)
"Limple set operators.")
(defconst comp-limple-assignments `(fetch-handler
,@comp-limple-sets)
"Limple operators that clobbers the first m-var argument.")
(defconst comp-limple-calls '(call
callref
direct-call
direct-callref)
"Limple operators use to call subrs.")
(define-error 'native-compiler-error-dyn-func
"can't native compile a non lexical scoped function"
'native-compiler-error)
(define-error 'native-compiler-error-empty-byte
"empty byte compiler output"
'native-compiler-error)
(eval-when-compile
(defconst comp-op-stack-info
(cl-loop with h = (make-hash-table)
for k across byte-code-vector
for v across byte-stack+-info
when k
do (puthash k v h)
finally return h)
"Hash table lap-op -> stack adjustment."))
(cl-defstruct comp-data-container
"Data relocation container structure."
(l () :type list
:documentation "Constant objects used by functions.")
(idx (make-hash-table :test #'equal) :type hash-table
:documentation "Obj -> position into the previous field."))
(cl-defstruct comp-ctxt
"Lisp side of the compiler context."
(output nil :type string
:documentation "Target output file-name for the compilation.")
(top-level-forms () :type list
:documentation "List of spilled top level forms.")
(funcs-h (make-hash-table) :type hash-table
:documentation "lisp-func-name -> comp-func.
This is to build the prev field.")
(d-default (make-comp-data-container) :type comp-data-container
:documentation "Standard data relocated in use by functions.")
(d-impure (make-comp-data-container) :type comp-data-container
:documentation "Relocated data that cannot be moved into pure space.
This is tipically for top-level forms other than defun.")
(d-ephemeral (make-comp-data-container) :type comp-data-container
:documentation "Relocated data not necessary after load.")
(with-late-load nil :type boolean
:documentation "When non nil support late load."))
(cl-defstruct comp-args-base
(min nil :type number
:documentation "Minimum number of arguments allowed."))
(cl-defstruct (comp-args (:include comp-args-base))
(max nil :type number
:documentation "Maximum number of arguments allowed.
To be used when ncall-conv is nil."))
(cl-defstruct (comp-nargs (:include comp-args-base))
"Describe args when the function signature is of kind:
(ptrdiff_t nargs, Lisp_Object *args)."
(nonrest nil :type number
:documentation "Number of non rest arguments.")
(rest nil :type boolean
:documentation "t if rest argument is present."))
(cl-defstruct (comp-block (:copier nil)
(:constructor make--comp-block
(addr sp name))) ; Positional
"A basic block."
(name nil :type symbol)
;; These two slots are used during limplification.
(sp nil :type number
:documentation "When non nil indicates the sp value while entering
into it.")
(addr nil :type number
:documentation "Start block LAP address.")
(insns () :type list
:documentation "List of instructions.")
(closed nil :type boolean
:documentation "t if closed.")
;; All the followings are for SSA and CGF analysis.
;; Keep in sync with `comp-clean-ssa'!!
(in-edges () :type list
:documentation "List of incoming edges.")
(out-edges () :type list
:documentation "List of out-coming edges.")
(dom nil :type comp-block
:documentation "Immediate dominator.")
(df (make-hash-table) :type hash-table
:documentation "Dominance frontier set. Block-name -> block")
(post-num nil :type number
:documentation "Post order number.")
(final-frame nil :type vector
:documentation "This is a copy of the frame when leaving the block.
Is in use to help the SSA rename pass."))
(cl-defstruct (comp-edge (:copier nil) (:constructor make--comp-edge))
"An edge connecting two basic blocks."
(src nil :type comp-block)
(dst nil :type comp-block)
(number nil :type number
:documentation "The index number corresponding to this edge in the
edge vector."))
(defun comp-block-preds (basic-block)
"Given BASIC-BLOCK return the list of its predecessors."
(mapcar #'comp-edge-src (comp-block-in-edges basic-block)))
(defun comp-gen-counter ()
"Return a sequential number generator."
(let ((n -1))
(lambda ()
(cl-incf n))))
(cl-defstruct (comp-func (:copier nil))
"LIMPLE representation of a function."
(name nil :type symbol
:documentation "Function symbol name.")
(c-name nil :type string
:documentation "The function name in the native world.")
(byte-func nil
:documentation "Byte compiled version.")
(doc nil :type string
:documentation "Doc string.")
(int-spec nil :type list
:documentation "Interactive form.")
(lap () :type list
:documentation "LAP assembly representation.")
(ssa-status nil :type symbol
:documentation "SSA status either: 'nil', 'dirty' or 't'.
Once in SSA form this *must* be set to 'dirty' every time the topology of the
CFG is mutated by a pass.")
(args nil :type comp-args-base)
(frame-size nil :type number)
(blocks (make-hash-table) :type hash-table
:documentation "Key is the basic block symbol value is a comp-block
structure.")
(lap-block (make-hash-table :test #'equal) :type hash-table
:documentation "LAP lable -> LIMPLE basic block name.")
(edges () :type list
:documentation "List of edges connecting basic blocks.")
(block-cnt-gen (funcall #'comp-gen-counter) :type function
:documentation "Generates block numbers.")
(edge-cnt-gen (funcall #'comp-gen-counter) :type function
:documentation "Generates edges numbers.")
(has-non-local nil :type boolean
:documentation "t if non local jumps are present.")
(array-h (make-hash-table) :type hash-table
:documentation "array idx -> array length."))
(cl-defstruct (comp-mvar (:constructor make--comp-mvar))
"A meta-variable being a slot in the meta-stack."
(id nil :type (or null number)
:documentation "Unique id when in SSA form.")
;; The following two are allocation info.
(array-idx 0 :type fixnum
:documentation "The array where the m-var gets allocated.")
(slot nil :type (or fixnum symbol)
:documentation "Slot number in the array if a number or
'scratch' for scratch slot.")
(const-vld nil :type boolean
:documentation "Valid signal for the following slot.")
(constant nil
:documentation "When const-vld non nil this is used for holding
a value known at compile time.")
(type nil :type symbol
:documentation "When non nil indicates the type when known at compile
time."))
;; Special vars used by some passes
(defvar comp-func)
(defsubst comp-set-op-p (op)
"Assignment predicate for OP."
(when (memq op comp-limple-sets) t))
(defsubst comp-assign-op-p (op)
"Assignment predicate for OP."
(when (memq op comp-limple-assignments) t))
(defsubst comp-limple-insn-call-p (insn)
"Limple INSN call predicate."
(when (memq (car-safe insn) comp-limple-calls) t))
(defsubst comp-type-hint-p (func)
"Type hint predicate for function name FUNC."
(when (memq func comp-type-hints) t))
(defsubst comp-alloc-class-to-container (alloc-class)
"Given ALLOC-CLASS return the data container for the current context.
Assume allocaiton class 'd-default as default."
(cl-struct-slot-value 'comp-ctxt (or alloc-class 'd-default) comp-ctxt))
(defsubst comp-add-const-to-relocs (obj)
"Keep track of OBJ into the ctxt relocations."
(puthash obj t (comp-data-container-idx (comp-alloc-class-to-container
comp-curr-allocation-class))))
(cl-defun comp-log (data &optional (level 1))
"Log DATA at LEVEL.
LEVEL is a number from 1-3; if it is less than `comp-verbose', do
nothing. If `noninteractive', log with `message'. Otherwise,
log with `comp-log-to-buffer'."
(when (>= comp-verbose level)
(if noninteractive
(cl-typecase data
(atom (message "%s" data))
(t (dolist (elem data)
(message "%s" elem))))
(comp-log-to-buffer data))))
(cl-defun comp-log-to-buffer (data)
"Log DATA to `comp-log-buffer-name'."
(let* ((log-buffer
(or (get-buffer comp-log-buffer-name)
(with-current-buffer (get-buffer-create comp-log-buffer-name)
(setf buffer-read-only t)
(current-buffer))))
(log-window (get-buffer-window log-buffer))
(inhibit-read-only t)
at-end-p)
(with-current-buffer log-buffer
(when (= (point) (point-max))
(setf at-end-p t))
(save-excursion
(goto-char (point-max))
(cl-typecase data
(atom (princ data log-buffer))
(t (dolist (elem data)
(princ elem log-buffer)
(insert "\n"))))
(insert "\n"))
(when (and at-end-p log-window)
;; When log window's point is at the end, follow the tail.
(with-selected-window log-window
(goto-char (point-max)))))))
(defun comp-log-func (func verbosity)
"Log function FUNC.
VERBOSITY is a number between 0 and 3."
(when (>= comp-verbose verbosity)
(comp-log (format "\nFunction: %s\n" (comp-func-name func)) verbosity)
(cl-loop for block-name being each hash-keys of (comp-func-blocks func)
using (hash-value bb)
do (comp-log (concat "<" (symbol-name block-name) ">") verbosity)
(comp-log (comp-block-insns bb) verbosity))))
(defun comp-log-edges (func)
"Log edges in FUNC."
(let ((edges (comp-func-edges func)))
(comp-log (format "\nEdges in function: %s\n"
(comp-func-name func))
2)
(mapc (lambda (e)
(comp-log (format "n: %d src: %s dst: %s\n"
(comp-edge-number e)
(comp-block-name (comp-edge-src e))
(comp-block-name (comp-edge-dst e)))
2))
edges)))
;;; spill-lap pass specific code.
(defun comp-c-func-name (name prefix)
"Given NAME return a name suitable for the native code.
Put PREFIX in front of it."
;; Unfortunatelly not all symbol names are valid as C function names...
;; Nassi's algorithm here:
(let* ((orig-name (if (symbolp name) (symbol-name name) name))
(crypted (cl-loop with str = (make-string (* 2 (length orig-name)) 0)
for j from 0 by 2
for i across orig-name
for byte = (format "%x" i)
do (aset str j (aref byte 0))
(aset str (1+ j) (aref byte 1))
finally return str))
(human-readable (replace-regexp-in-string
"-" "_" orig-name))
(human-readable (replace-regexp-in-string
(rx (not (any "0-9a-z_"))) "" human-readable)))
(concat prefix crypted "_" human-readable)))
(defun comp-decrypt-arg-list (x function-name)
"Decript argument list X for FUNCTION-NAME."
(unless (fixnump x)
(signal 'native-compiler-error-dyn-func function-name))
(let ((rest (not (= (logand x 128) 0)))
(mandatory (logand x 127))
(nonrest (ash x -8)))
(if (and (null rest)
(< nonrest 9)) ;; SUBR_MAX_ARGS
(make-comp-args :min mandatory
:max nonrest)
(make-comp-nargs :min mandatory
:nonrest nonrest
:rest rest))))
(defsubst comp-byte-frame-size (byte-compiled-func)
"Given BYTE-COMPILED-FUNC return the frame size to be allocated."
(aref byte-compiled-func 3))
(cl-defgeneric comp-spill-lap-function (input)
"Byte compile INPUT and spill lap for further stages.")
(cl-defgeneric comp-spill-lap-function ((function-name symbol))
"Byte compile FUNCTION-NAME spilling data from the byte compiler."
(let* ((f (symbol-function function-name))
(func (make-comp-func :name function-name
:c-name (comp-c-func-name function-name "F")
:doc (documentation f)
:int-spec (interactive-form f))))
(when (byte-code-function-p f)
(signal 'native-compiler-error
"can't native compile an already bytecompiled function"))
(setf (comp-func-byte-func func)
(byte-compile (comp-func-name func)))
(let ((lap (alist-get nil byte-to-native-lap)))
(cl-assert lap)
(comp-log lap 2)
(let ((arg-list (aref (comp-func-byte-func func) 0)))
(setf (comp-func-args func)
(comp-decrypt-arg-list arg-list function-name)
(comp-func-lap func)
lap
(comp-func-frame-size func)
(comp-byte-frame-size (comp-func-byte-func func))))
(setf (comp-ctxt-top-level-forms comp-ctxt)
(list (make-byte-to-native-function :name function-name)))
;; Create the default array.
(puthash 0 (comp-func-frame-size func) (comp-func-array-h func))
(list func))))
(cl-defgeneric comp-spill-lap-function ((filename string))
"Byte compile FILENAME spilling data from the byte compiler."
(byte-compile-file filename)
(unless byte-to-native-top-level-forms
(signal 'native-compiler-error-empty-byte filename))
(setf (comp-ctxt-top-level-forms comp-ctxt)
(reverse byte-to-native-top-level-forms))
(cl-loop
for f in (cl-loop for x in byte-to-native-top-level-forms ; All non anonymous.
when (and (byte-to-native-function-p x)
(byte-to-native-function-name x))
collect x)
for name = (byte-to-native-function-name f)
for data = (byte-to-native-function-data f)
for lap = (alist-get name byte-to-native-lap)
for func = (make-comp-func :name name
:byte-func data
:doc (documentation data)
:int-spec (interactive-form data)
:c-name (comp-c-func-name name "F")
:args (comp-decrypt-arg-list (aref data 0) name)
:lap (alist-get name byte-to-native-lap)
:frame-size (comp-byte-frame-size data))
do
;; Create the default array.
(puthash 0 (comp-func-frame-size func) (comp-func-array-h func))
(comp-log (format "Function %s:\n" name) 1)
(comp-log lap 1)
collect func))
(defun comp-spill-lap (input)
"Byte compile and spill the LAP representation for INPUT.
If INPUT is a symbol this is the function-name to be compiled.
If INPUT is a string this is the file path to be compiled."
(let ((byte-native-compiling t)
(byte-to-native-lap ())
(byte-to-native-top-level-forms ()))
(comp-spill-lap-function input)))
;;; Limplification pass specific code.
(cl-defstruct (comp-limplify (:copier nil))
"Support structure used during function limplification."
(frame nil :type vector
:documentation "Meta-stack used to flat LAP.")
(curr-block nil :type comp-block
:documentation "Current block being limplified.")
(sp -1 :type number
:documentation "Current stack pointer while walking LAP.
Points to the next slot to be filled.")
(pc 0 :type number
:documentation "Current program counter while walking LAP.")
(label-to-addr nil :type hash-table
:documentation "LAP hash table -> address.")
(pending-blocks () :type list
:documentation "List of blocks waiting for limplification."))
(defconst comp-lap-eob-ops
'(byte-goto byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
byte-goto-if-not-nil-else-pop byte-return byte-pushcatch
byte-switch byte-pushconditioncase)
"LAP end of basic blocks op codes.")
(defsubst comp-lap-eob-p (inst)
"Return t if INST closes the current basic blocks, nil otherwise."
(when (memq (car inst) comp-lap-eob-ops)
t))
(defsubst comp-lap-fall-through-p (inst)
"Return t if INST fall through, nil otherwise."
(when (not (memq (car inst) '(byte-goto byte-return)))
t))
(defsubst comp-sp ()
"Current stack pointer."
(comp-limplify-sp comp-pass))
(gv-define-setter comp-sp (value)
`(setf (comp-limplify-sp comp-pass) ,value))
(defmacro comp-with-sp (sp &rest body)
"Execute BODY setting the stack pointer to SP.
Restore the original value afterwards."
(declare (debug (form body))
(indent defun))
(let ((sym (gensym)))
`(let ((,sym (comp-sp)))
(setf (comp-sp) ,sp)
(progn ,@body)
(setf (comp-sp) ,sym))))
(defsubst comp-slot-n (n)
"Slot N into the meta-stack."
(aref (comp-limplify-frame comp-pass) n))
(defsubst comp-slot ()
"Current slot into the meta-stack pointed by sp."
(comp-slot-n (comp-sp)))
(defsubst comp-slot+1 ()
"Slot into the meta-stack pointed by sp + 1."
(comp-slot-n (1+ (comp-sp))))
(defsubst comp-label-to-addr (label)
"Find the address of LABEL."
(or (gethash label (comp-limplify-label-to-addr comp-pass))
(signal 'native-ice (list "label not found" label))))
(defsubst comp-mark-curr-bb-closed ()
"Mark the current basic block as closed."
(setf (comp-block-closed (comp-limplify-curr-block comp-pass)) t))
(defun comp-bb-maybe-add (lap-addr &optional sp)
"If necessary create a pending basic block for LAP-ADDR with stack depth SP.
The basic block is returned regardless it was already declared or not."
(let ((bb (or (cl-loop ; See if the block was already liplified.
for bb being the hash-value in (comp-func-blocks comp-func)
when (equal (comp-block-addr bb) lap-addr)
return bb)
(cl-find-if (lambda (bb) ; Look within the pendings blocks.
(= (comp-block-addr bb) lap-addr))
(comp-limplify-pending-blocks comp-pass)))))
(if bb
(progn
(unless (or (null sp) (= sp (comp-block-sp bb)))
(signal 'native-ice (list "incoherent stack pointers"
sp (comp-block-sp bb))))
bb)
(car (push (make--comp-block lap-addr sp (comp-new-block-sym))
(comp-limplify-pending-blocks comp-pass))))))
(defsubst comp-call (func &rest args)
"Emit a call for function FUNC with ARGS."
`(call ,func ,@args))
(defun comp-callref (func nargs stack-off)
"Emit a call using narg abi for FUNC.
NARGS is the number of arguments.
STACK-OFF is the index of the first slot frame involved."
`(callref ,func ,@(cl-loop repeat nargs
for sp from stack-off
collect (comp-slot-n sp))))
(cl-defun make-comp-mvar (&key slot (constant nil const-vld) type)
(when const-vld
(comp-add-const-to-relocs constant))
(make--comp-mvar :slot slot :const-vld const-vld :constant constant
:type type))
(defun comp-new-frame (size &optional ssa)
"Return a clean frame of meta variables of size SIZE.
If SSA non nil populate it of m-var in ssa form."
(cl-loop with v = (make-vector size nil)
for i below size
for mvar = (if ssa
(make-comp-ssa-mvar :slot i)
(make-comp-mvar :slot i))
do (aset v i mvar)
finally return v))
(defsubst comp-emit (insn)
"Emit INSN into basic block BB."
(let ((bb (comp-limplify-curr-block comp-pass)))
(cl-assert (not (comp-block-closed bb)))
(push insn (comp-block-insns bb))))
(defsubst comp-emit-set-call (call)
"Emit CALL assigning the result the the current slot frame.
If the callee function is known to have a return type propagate it."
(cl-assert call)
(comp-emit (list 'set (comp-slot) call)))
(defun comp-copy-slot (src-n &optional dst-n)
"Set slot number DST-N to slot number SRC-N as source.
If DST-N is specified use it otherwise assume it to be the current slot."
(comp-with-sp (or dst-n (comp-sp))
(let ((src-slot (comp-slot-n src-n)))
(cl-assert src-slot)
(comp-emit `(set ,(comp-slot) ,src-slot)))))
(defsubst comp-emit-annotation (str)
"Emit annotation STR."
(comp-emit `(comment ,str)))
(defsubst comp-emit-setimm (val)
"Set constant VAL to current slot."
(comp-add-const-to-relocs val)
;; Leave relocation index nil on purpose, will be fixed-up in final
;; by `comp-finalize-relocs'.
(comp-emit `(setimm ,(comp-slot) ,val)))
(defun comp-make-curr-block (block-name entry-sp &optional addr)
"Create a basic block with BLOCK-NAME and set it as current block.
ENTRY-SP is the sp value when entering.
The block is added to the current function.
The block is returned."
(let ((bb (make--comp-block addr entry-sp block-name)))
(setf (comp-limplify-curr-block comp-pass) bb
(comp-limplify-pc comp-pass) addr
(comp-limplify-sp comp-pass) (comp-block-sp bb))
(puthash (comp-block-name bb) bb (comp-func-blocks comp-func))
bb))
(defun comp-emit-uncond-jump (lap-label)
"Emit an unconditional branch to LAP-LABEL."
(cl-destructuring-bind (label-num . stack-depth) lap-label
(when stack-depth
(cl-assert (= (1- stack-depth) (comp-sp))))
(let ((target (comp-bb-maybe-add (comp-label-to-addr label-num)
(comp-sp))))
(comp-emit `(jump ,(comp-block-name target)))
(comp-mark-curr-bb-closed))))
(defun comp-emit-cond-jump (a b target-offset lap-label negated)
"Emit a conditional jump to LAP-LABEL when A and B satisfy EQ.
TARGET-OFFSET is the positive offset on the SP when branching to the target
block.
If NEGATED non null negate the tested condition.
Return value is the fall through block name."
(cl-destructuring-bind (label-num . label-sp) lap-label
(let* ((bb (comp-block-name (comp-bb-maybe-add (1+ (comp-limplify-pc comp-pass))
(comp-sp)))) ; Fall through block.
(target-sp (+ target-offset (comp-sp)))
(target (comp-block-name (comp-bb-maybe-add (comp-label-to-addr label-num)
target-sp))))
(when label-sp
(cl-assert (= (1- label-sp) (+ target-offset (comp-sp)))))
(comp-emit (if negated
(list 'cond-jump a b target bb)
(list 'cond-jump a b bb target)))
(comp-mark-curr-bb-closed)
bb)))
(defun comp-emit-handler (lap-label handler-type)
"Emit a non local exit handler to LAP-LABEL of type HANDLER-TYPE."
(cl-destructuring-bind (label-num . label-sp) lap-label
(cl-assert (= (- label-sp 2) (comp-sp)))
(setf (comp-func-has-non-local comp-func) t)
(let* ((guarded-bb (comp-bb-maybe-add (1+ (comp-limplify-pc comp-pass))
(comp-sp)))
(handler-bb (comp-bb-maybe-add (comp-label-to-addr label-num)
(1+ (comp-sp))))
(pop-bb (make--comp-block nil (comp-sp) (comp-new-block-sym))))
(comp-emit (list 'push-handler
handler-type
(comp-slot+1)
(comp-block-name pop-bb)
(comp-block-name guarded-bb)))
(comp-mark-curr-bb-closed)
;; Emit the basic block to pop the handler if we got the non local.
(puthash (comp-block-name pop-bb) pop-bb (comp-func-blocks comp-func))
(setf (comp-limplify-curr-block comp-pass) pop-bb)
(comp-emit `(fetch-handler ,(comp-slot+1)))
(comp-emit `(jump ,(comp-block-name handler-bb)))
(comp-mark-curr-bb-closed))))
(defun comp-limplify-listn (n)
"Limplify list N."
(comp-with-sp (+ (comp-sp) n -1)
(comp-emit-set-call (comp-call 'cons
(comp-slot)
(make-comp-mvar :constant nil))))
(cl-loop for sp from (+ (comp-sp) n -2) downto (comp-sp)
do (comp-with-sp sp
(comp-emit-set-call (comp-call 'cons
(comp-slot)
(comp-slot+1))))))
(defun comp-new-block-sym ()
"Return a unique symbol naming the next new basic block."
(intern (format "bb_%s" (funcall (comp-func-block-cnt-gen comp-func)))))
(defun comp-fill-label-h ()
"Fill label-to-addr hash table for the current function."
(setf (comp-limplify-label-to-addr comp-pass) (make-hash-table :test 'eql))
(cl-loop for insn in (comp-func-lap comp-func)
for addr from 0
do (pcase insn
(`(TAG ,label . ,_)
(puthash label addr (comp-limplify-label-to-addr comp-pass))))))
(defun comp-emit-switch (var last-insn)
"Emit a limple for a lap jump table given VAR and LAST-INSN."
;; FIXME this not efficient for big jump tables. We should have a second
;; strategy for this case.
(pcase last-insn
(`(setimm ,_ ,jmp-table)
(cl-loop
for test being each hash-keys of jmp-table
using (hash-value target-label)
with len = (hash-table-count jmp-table)
with test-func = (hash-table-test jmp-table)
for n from 1
for last = (= n len)
for m-test = (make-comp-mvar :constant test)
for target-name = (comp-block-name (comp-bb-maybe-add (comp-label-to-addr target-label)
(comp-sp)))
for ff-bb = (if last
(comp-bb-maybe-add (1+ (comp-limplify-pc comp-pass))
(comp-sp))
(make--comp-block nil
(comp-sp)
(comp-new-block-sym)))
for ff-bb-name = (comp-block-name ff-bb)
if (eq test-func 'eq)
do (comp-emit (list 'cond-jump var m-test ff-bb-name target-name))
else
;; Store the result of the comparison into the scratch slot before
;; emitting the conditional jump.
do (comp-emit (list 'set (make-comp-mvar :slot 'scratch)
(comp-call test-func var m-test)))
(comp-emit (list 'cond-jump
(make-comp-mvar :slot 'scratch)
(make-comp-mvar :constant nil)
target-name ff-bb-name))
do (unless last
;; All fall through are artificially created here except the last one.
(puthash ff-bb-name ff-bb (comp-func-blocks comp-func))
(setf (comp-limplify-curr-block comp-pass) ff-bb))))
(_ (signal 'native-ice
"missing previous setimm while creating a switch"))))
(defun comp-emit-set-call-subr (subr-name sp-delta)
"Emit a call for SUBR-NAME.
SP-DELTA is the stack adjustment."
(let ((subr (symbol-function subr-name))
(nargs (1+ (- sp-delta))))
(unless (subrp subr)
(signal 'native-ice (list "not a subr" subr)))
(let* ((arity (subr-arity subr))
(minarg (car arity))
(maxarg (cdr arity)))
(when (eq maxarg 'unevalled)
(signal 'native-ice (list "subr contains unevalled args" subr-name)))
(if (eq maxarg 'many)
;; callref case.
(comp-emit-set-call (comp-callref subr-name nargs (comp-sp)))
;; Normal call.
(unless (and (>= maxarg nargs) (<= minarg nargs))
(signal 'native-ice
(list "incoherent stack adjustment" nargs maxarg minarg)))
(let* ((subr-name subr-name)
(slots (cl-loop for i from 0 below maxarg
collect (comp-slot-n (+ i (comp-sp))))))
(comp-emit-set-call (apply #'comp-call (cons subr-name slots))))))))
(eval-when-compile
(defun comp-op-to-fun (x)
"Given the LAP op strip \"byte-\" to have the subr name."
(intern (replace-regexp-in-string "byte-" "" x)))
(defun comp-body-eff (body op-name sp-delta)
"Given the original body BODY compute the effective one.
When BODY is auto guess function name form the LAP byte-code
name. Otherwise expect lname fnname."
(pcase (car body)
('auto
(list `(comp-emit-set-call-subr
',(comp-op-to-fun op-name)
,sp-delta)))
((pred symbolp)
(list `(comp-emit-set-call-subr
',(car body)
,sp-delta)))
(_ body))))
(defmacro comp-op-case (&rest cases)
"Expand CASES into the corresponding `pcase' expansion.
This is responsible for generating the proper stack adjustment when known and
the annotation emission."
(declare (debug (body))
(indent defun))
`(pcase op
,@(cl-loop for (op . body) in cases
for sp-delta = (gethash op comp-op-stack-info)
for op-name = (symbol-name op)
if body
collect `(',op
;; Log all LAP ops except the TAG one.
,(unless (eq op 'TAG)
`(comp-emit-annotation
,(concat "LAP op " op-name)))
;; Emit the stack adjustment if present.
,(when (and sp-delta (not (eq 0 sp-delta)))
`(cl-incf (comp-sp) ,sp-delta))
,@(comp-body-eff body op-name sp-delta))
else
collect `(',op (signal 'native-ice
(list "unsupported LAP op" ',op-name))))
(_ (signal 'native-ice (list "unexpected LAP op" (symbol-name op))))))
(defun comp-limplify-lap-inst (insn)
"Limplify LAP instruction INSN pushing it in the proper basic block."
(let ((op (car insn))
(arg (if (consp (cdr insn))
(cadr insn)
(cdr insn))))
(comp-op-case
(TAG
(cl-destructuring-bind (_TAG label-num . label-sp) insn
;; Paranoid?
(when label-sp
(cl-assert (= (1- label-sp) (comp-limplify-sp comp-pass))))
(comp-emit-annotation (format "LAP TAG %d" label-num))))
(byte-stack-ref
(comp-copy-slot (- (comp-sp) arg 1)))
(byte-varref
(comp-emit-set-call (comp-call 'symbol-value (make-comp-mvar
:constant arg))))
(byte-varset
(comp-emit (comp-call 'set_internal
(make-comp-mvar :constant arg)
(comp-slot+1))))
(byte-varbind ;; Verify
(comp-emit (comp-call 'specbind
(make-comp-mvar :constant arg)
(comp-slot+1))))
(byte-call
(cl-incf (comp-sp) (- arg))
(comp-emit-set-call (comp-callref 'funcall (1+ arg) (comp-sp))))
(byte-unbind
(comp-emit (comp-call 'helper_unbind_n
(make-comp-mvar :constant arg))))
(byte-pophandler
(comp-emit '(pop-handler)))
(byte-pushconditioncase
(comp-emit-handler (cddr insn) 'condition-case))
(byte-pushcatch
(comp-emit-handler (cddr insn) 'catcher))
(byte-nth auto)
(byte-symbolp auto)
(byte-consp auto)
(byte-stringp auto)
(byte-listp auto)
(byte-eq auto)
(byte-memq auto)
(byte-not null)
(byte-car auto)
(byte-cdr auto)
(byte-cons auto)
(byte-list1
(comp-limplify-listn 1))
(byte-list2
(comp-limplify-listn 2))
(byte-list3
(comp-limplify-listn 3))
(byte-list4
(comp-limplify-listn 4))
(byte-length auto)
(byte-aref auto)
(byte-aset auto)
(byte-symbol-value auto)
(byte-symbol-function auto)
(byte-set auto)
(byte-fset auto)
(byte-get auto)
(byte-substring auto)
(byte-concat2
(comp-emit-set-call (comp-callref 'concat 2 (comp-sp))))
(byte-concat3
(comp-emit-set-call (comp-callref 'concat 3 (comp-sp))))
(byte-concat4
(comp-emit-set-call (comp-callref 'concat 4 (comp-sp))))
(byte-sub1 1-)
(byte-add1 1+)
(byte-eqlsign =)
(byte-gtr >)
(byte-lss <)
(byte-leq <=)
(byte-geq >=)
(byte-diff -)
(byte-negate
(comp-emit-set-call (comp-call 'negate (comp-slot))))
(byte-plus +)
(byte-max auto)
(byte-min auto)
(byte-mult *)
(byte-point auto)
(byte-goto-char auto)
(byte-insert auto)
(byte-point-max auto)
(byte-point-min auto)
(byte-char-after auto)
(byte-following-char auto)
(byte-preceding-char preceding-char)
(byte-current-column auto)
(byte-indent-to
(comp-emit-set-call (comp-call 'indent-to
(comp-slot)
(make-comp-mvar :constant nil))))
(byte-scan-buffer-OBSOLETE)
(byte-eolp auto)
(byte-eobp auto)
(byte-bolp auto)
(byte-bobp auto)
(byte-current-buffer auto)
(byte-set-buffer auto)
(byte-save-current-buffer
(comp-emit (comp-call 'record_unwind_current_buffer)))
(byte-set-mark-OBSOLETE)
(byte-interactive-p-OBSOLETE)
(byte-forward-char auto)
(byte-forward-word auto)
(byte-skip-chars-forward auto)
(byte-skip-chars-backward auto)
(byte-forward-line auto)
(byte-char-syntax auto)
(byte-buffer-substring auto)
(byte-delete-region auto)
(byte-narrow-to-region
(comp-emit-set-call (comp-call 'narrow-to-region
(comp-slot)
(comp-slot+1))))
(byte-widen
(comp-emit-set-call (comp-call 'widen)))
(byte-end-of-line auto)
(byte-constant2) ; TODO
;; Branches.
(byte-goto
(comp-emit-uncond-jump (cddr insn)))
(byte-goto-if-nil
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 0
(cddr insn) nil))
(byte-goto-if-not-nil
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 0
(cddr insn) t))
(byte-goto-if-nil-else-pop
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 1
(cddr insn) nil))
(byte-goto-if-not-nil-else-pop
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 1
(cddr insn) t))
(byte-return
(comp-emit `(return ,(comp-slot+1))))
(byte-discard 'pass)
(byte-dup
(comp-copy-slot (1- (comp-sp))))
(byte-save-excursion
(comp-emit (comp-call 'record_unwind_protect_excursion)))
(byte-save-window-excursion-OBSOLETE)
(byte-save-restriction
(comp-emit (comp-call 'helper_save_restriction)))
(byte-catch) ;; Obsolete
(byte-unwind-protect
(comp-emit (comp-call 'helper_unwind_protect (comp-slot+1))))
(byte-condition-case) ;; Obsolete
(byte-temp-output-buffer-setup-OBSOLETE)
(byte-temp-output-buffer-show-OBSOLETE)
(byte-unbind-all) ;; Obsolete
(byte-set-marker auto)
(byte-match-beginning auto)
(byte-match-end auto)
(byte-upcase auto)
(byte-downcase auto)
(byte-string= string-equal)
(byte-string< string-lessp)
(byte-equal auto)
(byte-nthcdr auto)
(byte-elt auto)
(byte-member auto)
(byte-assq auto)
(byte-nreverse auto)
(byte-setcar auto)
(byte-setcdr auto)
(byte-car-safe auto)
(byte-cdr-safe auto)
(byte-nconc auto)
(byte-quo /)
(byte-rem %)
(byte-numberp auto)
(byte-integerp auto)
(byte-listN
(cl-incf (comp-sp) (- 1 arg))
(comp-emit-set-call (comp-callref 'list arg (comp-sp))))
(byte-concatN
(cl-incf (comp-sp) (- 1 arg))
(comp-emit-set-call (comp-callref 'concat arg (comp-sp))))
(byte-insertN
(cl-incf (comp-sp) (- 1 arg))
(comp-emit-set-call (comp-callref 'insert arg (comp-sp))))
(byte-stack-set
(comp-copy-slot (1+ (comp-sp)) (- (comp-sp) arg -1)))
(byte-stack-set2 (cl-assert nil)) ;; TODO
(byte-discardN
(cl-incf (comp-sp) (- arg)))
(byte-switch
;; Assume to follow the emission of a setimm.
;; This is checked into comp-emit-switch.
(comp-emit-switch (comp-slot+1)
(cl-second (comp-block-insns
(comp-limplify-curr-block comp-pass)))))
(byte-constant
(comp-emit-setimm arg))
(byte-discardN-preserve-tos
(cl-incf (comp-sp) (- arg))
(comp-copy-slot (+ arg (comp-sp)))))))
(defun comp-emit-narg-prologue (minarg nonrest rest)
"Emit the prologue for a narg function."
(cl-loop for i below minarg
do (comp-emit `(set-args-to-local ,(comp-slot-n i)))
(comp-emit '(inc-args)))
(cl-loop for i from minarg below nonrest
for bb = (intern (format "entry_%s" i))
for fallback = (intern (format "entry_fallback_%s" i))
do (comp-emit `(cond-jump-narg-leq ,i ,bb ,fallback))
(comp-make-curr-block bb (comp-sp))
(comp-emit `(set-args-to-local ,(comp-slot-n i)))
(comp-emit '(inc-args))
finally (comp-emit '(jump entry_rest_args)))
(when (not (= minarg nonrest))
(cl-loop for i from minarg below nonrest
for bb = (intern (format "entry_fallback_%s" i))
for next-bb = (if (= (1+ i) nonrest)
'entry_rest_args
(intern (format "entry_fallback_%s" (1+ i))))
do (comp-with-sp i
(comp-make-curr-block bb (comp-sp))
(comp-emit-setimm nil)
(comp-emit `(jump ,next-bb)))))
(comp-make-curr-block 'entry_rest_args (comp-sp))
(comp-emit `(set-rest-args-to-local ,(comp-slot-n nonrest)))
(setf (comp-sp) nonrest)
(when (and (> nonrest 8) (null rest))
(cl-decf (comp-sp))))
(defun comp-limplify-finalize-function (func)
"Reverse insns into all basic blocks of FUNC."
(cl-loop for bb being the hash-value in (comp-func-blocks func)
do (setf (comp-block-insns bb)
(nreverse (comp-block-insns bb))))
(comp-log-func func 2)
func)
(cl-defgeneric comp-emit-for-top-level (form for-late-load)
"Emit the limple code for top level FORM.")
(cl-defmethod comp-emit-for-top-level ((form byte-to-native-function) _)
(let* ((name (byte-to-native-function-name form))
(f (gethash name (comp-ctxt-funcs-h comp-ctxt)))
(args (comp-func-args f)))
(cl-assert (and name f))
(comp-emit (comp-call 'comp--register-subr
(make-comp-mvar :constant name)
(make-comp-mvar :constant (comp-args-base-min args))
(make-comp-mvar :constant (if (comp-args-p args)
(comp-args-max args)
'many))
(make-comp-mvar :constant (comp-func-c-name f))
(make-comp-mvar :constant (comp-func-doc f))
(make-comp-mvar :constant
(comp-func-int-spec f))
;; This is the compilation unit it-self passed as
;; parameter.
(make-comp-mvar :slot 0)))))
(cl-defmethod comp-emit-for-top-level ((form byte-to-native-top-level)
for-late-load)
(unless for-late-load
(let ((form (byte-to-native-top-level-form form)))
(comp-emit (comp-call 'eval
(let ((comp-curr-allocation-class 'd-impure))
(make-comp-mvar :constant form))
(make-comp-mvar :constant t))))))
(defun comp-limplify-top-level (for-late-load)
"Create a limple function to modify the global environment at load.
When FOR-LATE-LOAD is non nil the emitted function modifies only
function definition.
Synthesize a function called 'top_level_run' that gets one single
parameter (the compilation unit it-self). To define native
functions 'top_level_run' will call back `comp--register-subr'
into the C code forwarding the compilation unit."
;; Once an .eln is loaded and Emacs is dumped 'top_level_run' has no
;; reasons to be execute ever again. Therefore all objects can be
;; just ephemeral.
(let* ((comp-curr-allocation-class 'd-ephemeral)
(func (make-comp-func :name (if for-late-load
'late-top-level-run
'top-level-run)
:c-name (if for-late-load
"late_top_level_run"
"top_level_run")
:args (make-comp-args :min 1 :max 1)
:frame-size 1))
(comp-func func)
(comp-pass (make-comp-limplify
:curr-block (make--comp-block -1 0 'top-level)
:frame (comp-new-frame 1))))
(comp-make-curr-block 'entry (comp-sp))
(comp-emit-annotation (if for-late-load
"Late top level"
"Top level"))
;; Assign the compilation unit incoming as parameter to the slot frame 0.
(comp-emit `(set-par-to-local ,(comp-slot-n 0) 0))
(mapc (lambda (x) (comp-emit-for-top-level x for-late-load))
(comp-ctxt-top-level-forms comp-ctxt))
(comp-emit `(return ,(make-comp-mvar :constant t)))
(puthash 0 (comp-func-frame-size func) (comp-func-array-h func))
(comp-limplify-finalize-function func)))
(defun comp-addr-to-bb-name (addr)
"Search for a block starting at ADDR into pending or limplified blocks."
;; FIXME Actually we could have another hash for this.
(cl-flet ((pred (bb)
(equal (comp-block-addr bb) addr)))
(if-let ((pending (cl-find-if #'pred
(comp-limplify-pending-blocks comp-pass))))
(comp-block-name pending)
(cl-loop for bb being the hash-value in (comp-func-blocks comp-func)
when (pred bb)
return (comp-block-name bb)))))
(defun comp-limplify-block (bb)
"Limplify basic-block BB and add it to the current function."
(setf (comp-limplify-curr-block comp-pass) bb
(comp-limplify-sp comp-pass) (comp-block-sp bb)
(comp-limplify-pc comp-pass) (comp-block-addr bb))
(puthash (comp-block-name bb) bb (comp-func-blocks comp-func))
(cl-loop
for inst-cell on (nthcdr (comp-limplify-pc comp-pass)
(comp-func-lap comp-func))
for inst = (car inst-cell)
for next-inst = (car-safe (cdr inst-cell))
do (comp-limplify-lap-inst inst)
(cl-incf (comp-limplify-pc comp-pass))
when (comp-lap-fall-through-p inst)
do (pcase next-inst
(`(TAG ,_label . ,label-sp)
(when label-sp
(cl-assert (= (1- label-sp) (comp-sp))))
(let* ((stack-depth (if label-sp
(1- label-sp)
(comp-sp)))
(next-bb (comp-block-name (comp-bb-maybe-add (comp-limplify-pc comp-pass) stack-depth))))
(unless (comp-block-closed bb)
(comp-emit `(jump ,next-bb))))
(cl-return)))
until (comp-lap-eob-p inst)))
(defun comp-limplify-function (func)
"Limplify a single function FUNC."
(let* ((frame-size (comp-func-frame-size func))
(comp-func func)
(comp-pass (make-comp-limplify
:frame (comp-new-frame frame-size)))
(args (comp-func-args func)))
(comp-fill-label-h)
;; Prologue
(comp-make-curr-block 'entry (comp-sp))
(comp-emit-annotation (concat "Lisp function: "
(symbol-name (comp-func-name func))))
(if (comp-args-p args)
(cl-loop for i below (comp-args-max args)
do (cl-incf (comp-sp))
(comp-emit `(set-par-to-local ,(comp-slot) ,i)))
(comp-emit-narg-prologue (comp-args-base-min args)
(comp-nargs-nonrest args)
(comp-nargs-rest args)))
(comp-emit '(jump bb_0))
;; Body
(comp-bb-maybe-add 0 (comp-sp))
(cl-loop for next-bb = (pop (comp-limplify-pending-blocks comp-pass))
while next-bb
do (comp-limplify-block next-bb))
;; Sanity check against block duplication.
(cl-loop with addr-h = (make-hash-table)
for bb being the hash-value in (comp-func-blocks func)
for addr = (comp-block-addr bb)
when addr
do (cl-assert (null (gethash addr addr-h)))
(puthash addr t addr-h))
(comp-limplify-finalize-function func)))
(defun comp-add-func-to-ctxt (func)
"Add FUNC to the current compiler contex."
(puthash (comp-func-name func)
func
(comp-ctxt-funcs-h comp-ctxt)))
(defun comp-limplify (lap-funcs)
"Compute the LIMPLE ir for LAP-FUNCS.
Top-level forms for the current context are rendered too."
(mapc #'comp-add-func-to-ctxt (mapcar #'comp-limplify-function lap-funcs))
(comp-add-func-to-ctxt (comp-limplify-top-level nil))
(when (comp-ctxt-with-late-load comp-ctxt)
(comp-add-func-to-ctxt (comp-limplify-top-level t))))
;;; SSA pass specific code.
;; After limplification no edges are present between basic blocks and an
;; implicit phi is present for every slot at the beginning of every basic block.
;; This pass is responsible for building all the edges and replace all m-vars
;; plus placing the needed phis.
;; Because the number of phis placed is (supposed) to be the minimum necessary
;; this form is called 'minimal SSA form'.
;; This pass should be run every time basic blocks or m-var are shuffled.
(cl-defun make-comp-ssa-mvar (&key slot (constant nil const-vld) type)
(let ((mvar (make--comp-mvar :slot slot
:const-vld const-vld
:constant constant
:type type)))
(setf (comp-mvar-id mvar) (sxhash-eq mvar))
mvar))
(defun comp-clean-ssa (f)
"Clean-up SSA for funtion F."
(setf (comp-func-edges f) ())
(cl-loop
for b being each hash-value of (comp-func-blocks f)
do (setf (comp-block-in-edges b) ()
(comp-block-out-edges b) ()
(comp-block-dom b) nil
(comp-block-df b) (make-hash-table)
(comp-block-post-num b) nil
(comp-block-final-frame b) nil
;; Prune all phis.
(comp-block-insns b) (cl-loop for insn in (comp-block-insns b)
unless (eq 'phi (car insn))
collect insn))))
(defun comp-compute-edges ()
"Compute the basic block edges for the current function."
(cl-flet ((edge-add (&rest args)
(push
(apply #'make--comp-edge
:number (funcall (comp-func-edge-cnt-gen comp-func))
args)
(comp-func-edges comp-func))))
(cl-loop with blocks = (comp-func-blocks comp-func)
for bb being each hash-value of blocks
for last-insn = (car (last (comp-block-insns bb)))
for (op first second third forth) = last-insn
do (cl-case op
(jump
(edge-add :src bb :dst (gethash first blocks)))
(cond-jump
(edge-add :src bb :dst (gethash third blocks))
(edge-add :src bb :dst (gethash forth blocks)))
(cond-jump-narg-leq
(edge-add :src bb :dst (gethash second blocks))
(edge-add :src bb :dst (gethash third blocks)))
(push-handler
(edge-add :src bb :dst (gethash third blocks))
(edge-add :src bb :dst (gethash forth blocks)))
(return)
(otherwise
(signal 'native-ice
(list "block does not end with a branch"
bb
(comp-func-name comp-func)))))
finally (setf (comp-func-edges comp-func)
(nreverse (comp-func-edges comp-func)))
;; Update edge refs into blocks.
(cl-loop for edge in (comp-func-edges comp-func)
do (push edge
(comp-block-out-edges (comp-edge-src edge)))
(push edge
(comp-block-in-edges (comp-edge-dst edge))))
(comp-log-edges comp-func))))
(defun comp-collect-rev-post-order (basic-block)
"Walk BASIC-BLOCK children and return their name in reversed post-order."
(let ((visited (make-hash-table))
(acc ()))
(cl-labels ((collect-rec (bb)
(let ((name (comp-block-name bb)))
(unless (gethash name visited)
(puthash name t visited)
(cl-loop for e in (comp-block-out-edges bb)
for dst-block = (comp-edge-dst e)
do (collect-rec dst-block))
(push name acc)))))
(collect-rec basic-block)
acc)))
(defun comp-compute-dominator-tree ()
"Compute immediate dominators for each basic block in current function."
;; Originally based on: "A Simple, Fast Dominance Algorithm"
;; Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001).
(cl-flet ((intersect (b1 b2)
(let ((finger1 (comp-block-post-num b1))
(finger2 (comp-block-post-num b2)))
(while (not (= finger1 finger2))
(while (< finger1 finger2)
(setf b1 (comp-block-dom b1)
finger1 (comp-block-post-num b1)))
(while (< finger2 finger1)
(setf b2 (comp-block-dom b2)
finger2 (comp-block-post-num b2))))
b1))
(first-processed (l)
(if-let ((p (cl-find-if (lambda (p) (comp-block-dom p)) l)))
p
(signal 'native-ice "cant't find first preprocessed"))))
(when-let ((blocks (comp-func-blocks comp-func))
(entry (gethash 'entry blocks))
;; No point to go on if the only bb is 'entry'.
(bb1 (gethash 'bb_1 blocks)))
(cl-loop with rev-bb-list = (comp-collect-rev-post-order entry)
with changed = t
while changed
initially (progn
(comp-log "Computing dominator tree...\n" 2)
(setf (comp-block-dom entry) entry)
;; Set the post order number.
(cl-loop for name in (reverse rev-bb-list)
for b = (gethash name blocks)
for i from 0
do (setf (comp-block-post-num b) i)))
do (cl-loop
for name in (cdr rev-bb-list)
for b = (gethash name blocks)
for preds = (comp-block-preds b)
for new-idom = (first-processed preds)
initially (setf changed nil)
do (cl-loop for p in (delq new-idom preds)
when (comp-block-dom p)
do (setf new-idom (intersect p new-idom)))
unless (eq (comp-block-dom b) new-idom)
do (setf (comp-block-dom b) new-idom
changed t))))))
(defun comp-compute-dominator-frontiers ()
"Compute the dominator frontier for each basic block in `comp-func'."
;; Originally based on: "A Simple, Fast Dominance Algorithm"
;; Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001).
(cl-loop with blocks = (comp-func-blocks comp-func)
for b-name being each hash-keys of blocks
using (hash-value b)
for preds = (comp-block-preds b)
when (>= (length preds) 2) ; All joins
do (cl-loop for p in preds
for runner = p
do (while (not (eq runner (comp-block-dom b)))
(puthash b-name b (comp-block-df runner))
(setf runner (comp-block-dom runner))))))
(defun comp-log-block-info ()
"Log basic blocks info for the current function."
(maphash (lambda (name bb)
(let ((dom (comp-block-dom bb))
(df (comp-block-df bb)))
(comp-log (format "block: %s idom: %s DF %s\n"
name
(when dom (comp-block-name dom))
(cl-loop for b being each hash-keys of df
collect b))
3)))
(comp-func-blocks comp-func)))
(defun comp-place-phis ()
"Place phi insns into the current function."
;; Originally based on: Static Single Assignment Book
;; Algorithm 3.1: Standard algorithm for inserting phi-functions
(cl-flet ((add-phi (slot-n bb)
;; Add a phi func for slot SLOT-N at the top of BB.
(push `(phi ,slot-n) (comp-block-insns bb)))
(slot-assigned-p (slot-n bb)
;; Return t if a SLOT-N was assigned within BB.
(cl-loop for insn in (comp-block-insns bb)
for op = (car insn)
when (or (and (comp-assign-op-p op)
(eql slot-n (comp-mvar-slot (cadr insn))))
;; fetch-handler is after a non local
;; therefore clobbers all frame!!!
(eq op 'fetch-handler))
return t)))
(cl-loop for i from 0 below (comp-func-frame-size comp-func)
;; List of blocks with a definition of mvar i
for defs-v = (cl-loop with blocks = (comp-func-blocks comp-func)
for b being each hash-value of blocks
when (slot-assigned-p i b)
collect b)
;; Set of basic blocks where phi is added.
for f = ()
;; Worklist, set of basic blocks that contain definitions of v.
for w = defs-v
do
(while w
(let ((x (pop w)))
(cl-loop for y being each hash-value of (comp-block-df x)
unless (cl-find y f)
do (add-phi i y)
(push y f)
;; Adding a phi implies mentioning the
;; corresponding slot so in case adjust w.
(unless (cl-find y defs-v)
(push y w))))))))
(defun comp-dom-tree-walker (bb pre-lambda post-lambda)
"Dominator tree walker function starting from basic block BB.
PRE-LAMBDA and POST-LAMBDA are called in pre or post-order if non nil."
(when pre-lambda
(funcall pre-lambda bb))
(when-let ((out-edges (comp-block-out-edges bb)))
(cl-loop for ed in out-edges
for child = (comp-edge-dst ed)
when (eq bb (comp-block-dom child))
;; Current block is the immediate dominator then recur.
do (comp-dom-tree-walker child pre-lambda post-lambda)))
(when post-lambda
(funcall post-lambda bb)))
(cl-defstruct (comp-ssa (:copier nil))
"Support structure used while SSA renaming."
(frame (comp-new-frame (comp-func-frame-size comp-func) t) :type vector
:documentation "Vector of m-vars."))
(defun comp-ssa-rename-insn (insn frame)
(dotimes (slot-n (comp-func-frame-size comp-func))
(cl-flet ((targetp (x)
;; Ret t if x is an mvar and target the correct slot number.
(and (comp-mvar-p x)
(eql slot-n (comp-mvar-slot x))))
(new-lvalue ()
;; If is an assignment make a new mvar and put it as l-value.
(let ((mvar (make-comp-ssa-mvar :slot slot-n)))
(setf (aref frame slot-n) mvar
(cadr insn) mvar))))
(pcase insn
(`(,(pred comp-assign-op-p) ,(pred targetp) . ,_)
(let ((mvar (aref frame slot-n)))
(setcdr insn (cl-nsubst-if mvar #'targetp (cdr insn))))
(new-lvalue))
(`(fetch-handler . ,_)
;; Clobber all no matter what!
(setf (aref frame slot-n) (make-comp-ssa-mvar :slot slot-n)))
(`(phi ,n)
(when (equal n slot-n)
(new-lvalue)))
(_
(let ((mvar (aref frame slot-n)))
(setcdr insn (cl-nsubst-if mvar #'targetp (cdr insn)))))))))
(defun comp-ssa-rename ()
"Entry point to rename into SSA within the current function."
(comp-log "Renaming\n" 2)
(let ((frame-size (comp-func-frame-size comp-func))
(visited (make-hash-table)))
(cl-labels ((ssa-rename-rec (bb in-frame)
(unless (gethash bb visited)
(puthash bb t visited)
(cl-loop for insn in (comp-block-insns bb)
do (comp-ssa-rename-insn insn in-frame))
(setf (comp-block-final-frame bb)
(copy-sequence in-frame))
(when-let ((out-edges (comp-block-out-edges bb)))
(cl-loop for ed in out-edges
for child = (comp-edge-dst ed)
;; Provide a copy of the same frame to all childs.
do (ssa-rename-rec child (copy-sequence in-frame)))))))
(ssa-rename-rec (gethash 'entry (comp-func-blocks comp-func))
(comp-new-frame frame-size t)))))
(defun comp-finalize-phis ()
"Fixup r-values into phis in all basic blocks."
(cl-flet ((finalize-phi (args b)
;; Concatenate into args all incoming m-vars for this phi.
(setcdr args
(cl-loop with slot-n = (comp-mvar-slot (car args))
for e in (comp-block-in-edges b)
for b = (comp-edge-src e)
for in-frame = (comp-block-final-frame b)
collect (aref in-frame slot-n)))))
(cl-loop for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop for (op . args) in (comp-block-insns b)
when (eq op 'phi)
do (finalize-phi args b)))))
(defun comp-ssa ()
"Port all functions into mininal SSA form."
(maphash (lambda (_ f)
(let* ((comp-func f)
(ssa-status (comp-func-ssa-status f)))
(unless (eq ssa-status t)
(when (eq ssa-status 'dirty)
(comp-clean-ssa f))
(comp-compute-edges)
(comp-compute-dominator-tree)
(comp-compute-dominator-frontiers)
(comp-log-block-info)
(comp-place-phis)
(comp-ssa-rename)
(comp-finalize-phis)
(comp-log-func comp-func 3)
(setf (comp-func-ssa-status f) t))))
(comp-ctxt-funcs-h comp-ctxt)))
;;; propagate pass specific code.
;; A very basic propagation pass follows.
;; This propagates values and types plus ref property in the control flow graph.
;; This is also responsible for removing function calls to pure functions if
;; possible.
(defvar comp-propagate-classes '(byte-optimize-associative-math
byte-optimize-binary-predicate
byte-optimize-concat
byte-optimize-equal
byte-optimize-identity
byte-optimize-member
byte-optimize-memq
byte-optimize-predicate)
"We optimize functions with 'byte-optimizer' property set to
one of these symbols. See byte-opt.el.")
(defsubst comp-strict-type-of (obj)
"Given OBJ return its type understanding fixnums."
;; Should be certainly smarter but now we take advantages just from fixnums.
(if (fixnump obj)
'fixnum
(type-of obj)))
(defun comp-copy-insn (insn)
"Deep copy INSN."
;; Adapted from `copy-tree'.
(if (consp insn)
(let (result)
(while (consp insn)
(let ((newcar (car insn)))
(if (or (consp (car insn)) (comp-mvar-p (car insn)))
(setf newcar (comp-copy-insn (car insn))))
(push newcar result))
(setf insn (cdr insn)))
(nconc (nreverse result)
(if (comp-mvar-p insn) (comp-copy-insn insn) insn)))
(if (comp-mvar-p insn)
(copy-comp-mvar insn)
insn)))
(defun comp-ref-args-to-array (args)
"Given ARGS assign them to a dedicated array."
(when args
(cl-loop with array-h = (comp-func-array-h comp-func)
with arr-idx = (hash-table-count array-h)
for i from 0
for arg in args
initially
(puthash arr-idx (length args) array-h)
do
;; We are not supposed to rename arrays more then once.
;; This because we do only one final back propagation
;; and arrays are used only once.
;; Note: this last is just a property of the code generated
;; by the byte-compiler.
(cl-assert (= (comp-mvar-array-idx arg) 0))
(setf (comp-mvar-slot arg) i
(comp-mvar-array-idx arg) arr-idx))))
(defun comp-propagate-prologue (backward)
"Prologue for the propagate pass.
Here goes everything that can be done not iteratively (read once).
- Forward propagate immediate involed in assignments.
- Backward propagate array layout when BACKWARD is non nil."
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn in (comp-block-insns b)
do (pcase insn
(`(set ,_lval (,(or 'callref 'direct-callref) ,_f . ,args))
(when backward
(comp-ref-args-to-array args)))
(`(,(or 'callref 'direct-callref) ,_f . ,args)
(when backward
(comp-ref-args-to-array args)))
(`(setimm ,lval ,v)
(setf (comp-mvar-const-vld lval) t
(comp-mvar-constant lval) v
(comp-mvar-type lval) (comp-strict-type-of v)))))))
(defsubst comp-mvar-propagate (lval rval)
"Propagate into LVAL properties of RVAL."
(setf (comp-mvar-const-vld lval) (comp-mvar-const-vld rval)
(comp-mvar-constant lval) (comp-mvar-constant rval)
(comp-mvar-type lval) (comp-mvar-type rval)))
;; Here should fall most of (defun byte-optimize-* equivalents.
(defsubst comp-function-optimizable (f args)
"Given function F called with ARGS return non nil when optimizable."
(when (cl-every #'comp-mvar-const-vld args)
(or (get f 'pure)
(memq (get f 'byte-optimizer) comp-propagate-classes)
(let ((values (mapcar #'comp-mvar-constant args)))
(pcase f
;; Simple integer operation.
;; Note: byte-opt uses `byte-opt--portable-numberp'
;; instead of just`fixnump'.
((or '+ '- '* '1+ '-1) (and (cl-every #'fixnump values)
(fixnump (apply f values))))
('/ (and (cl-every #'fixnump values)
(not (= (car (last values)) 0)))))))))
(defsubst comp-function-call-maybe-remove (insn f args)
"Given INSN when F is pure if all ARGS are known remove the function call."
(when (comp-function-optimizable f args)
(ignore-errors
;; No point to complain here because we should do basic block
;; pruning in order to be sure that this is not dead-code. This
;; is now left to gcc, to be implemented only if we want a
;; reliable diagnostic here.
(let ((value (apply f (mapcar #'comp-mvar-constant args))))
;; See `comp-emit-setimm'.
(comp-add-const-to-relocs value)
(setf (car insn) 'setimm
(cddr insn) `(,value))))))
(defun comp-propagate-insn (insn)
"Propagate within INSN."
(pcase insn
(`(set ,lval ,rval)
(pcase rval
(`(,(or 'call 'direct-call) ,f . ,args)
(setf (comp-mvar-type lval)
(alist-get f comp-known-ret-types))
(comp-function-call-maybe-remove insn f args))
(`(,(or 'callref 'direct-callref) ,f . ,args)
(setf (comp-mvar-type lval)
(alist-get f comp-known-ret-types))
(comp-function-call-maybe-remove insn f args))
(_
(comp-mvar-propagate lval rval))))
(`(phi ,lval . ,rest)
;; Forward const prop here.
(when-let* ((vld (cl-every #'comp-mvar-const-vld rest))
(consts (mapcar #'comp-mvar-constant rest))
(x (car consts))
(equals (cl-every (lambda (y) (equal x y)) consts)))
(setf (comp-mvar-constant lval) x))
;; Forward type propagation.
;; FIXME: checking for type equality is not sufficient cause does not
;; account type hierarchy!
(when-let* ((types (mapcar #'comp-mvar-type rest))
(non-empty (cl-notany #'null types))
(x (car types))
(eqs (cl-every (lambda (y) (eq x y)) types)))
(setf (comp-mvar-type lval) x))
;; Backward propagate array index and slot.
(let ((arr-idx (comp-mvar-array-idx lval)))
(when (> arr-idx 0)
(cl-loop with slot = (comp-mvar-slot lval)
for arg in rest
do
(setf (comp-mvar-array-idx arg) arr-idx
(comp-mvar-slot arg) slot)))))))
(defun comp-propagate* ()
"Propagate for set* and phi operands.
Return t if something was changed."
(cl-loop with modified = nil
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop for insn in (comp-block-insns b)
for orig-insn = (unless modified ; Save consing after 1th change.
(comp-copy-insn insn))
do (comp-propagate-insn insn)
when (and (null modified) (not (equal insn orig-insn)))
do (setf modified t))
finally return modified))
(defun comp-propagate1 (backward)
(comp-ssa)
(when (>= comp-speed 2)
(maphash (lambda (_ f)
;; FIXME remove the following condition when tested.
(unless (comp-func-has-non-local f)
(let ((comp-func f))
(comp-propagate-prologue backward)
(cl-loop
for i from 1
while (comp-propagate*)
finally (comp-log (format "Propagation run %d times\n" i) 2))
(comp-log-func comp-func 3))))
(comp-ctxt-funcs-h comp-ctxt))))
(defun comp-propagate (_)
"Forward propagate types and consts within the lattice."
(comp-propagate1 nil))
(defun comp-propagate-alloc (_)
"Forward propagate types and consts within the lattice.
Backward propagate array placement properties."
(comp-propagate1 t))
;;; Call optimizer pass specific code.
;; This pass is responsible for the following optimizations:
;; - Call to subrs that are in defined in the C source and are passing through
;; funcall trampoline gets optimized into normal indirect calls.
;; This makes effectively this calls equivalent to all the subrs that got
;; dedicated byte-code ops.
;; Triggered at comp-speed >= 2.
;; - Recursive calls gets optimized into direct calls.
;; Triggered at comp-speed >= 2.
;; - Intra compilation unit procedure calls gets optimized into direct calls.
;; This can be a big win and even allow gcc to inline but does not make
;; function in the compilation unit re-definable safely without recompiling
;; the full compilation unit.
;; For this reason this is triggered only at comp-speed == 3.
(defun comp-call-optim-form-call (callee args self)
""
(cl-flet ((fill-args (args total)
;; Fill missing args to reach TOTAL
(append args (cl-loop repeat (- total (length args))
collect (make-comp-mvar :constant nil)))))
(when (and (symbolp callee) ; Do nothing if callee is a byte compiled func.
(not (memq callee comp-never-optimize-functions)))
(let* ((f (symbol-function callee))
(subrp (subrp f))
(callee-in-unit (gethash callee
(comp-ctxt-funcs-h comp-ctxt))))
(cond
((and subrp (not (subr-native-elisp-p f)))
;; Trampoline removal.
(let* ((callee (intern (subr-name f))) ; Fix aliased names.
(maxarg (cdr (subr-arity f)))
(call-type (if (if subrp
(not (numberp maxarg))
(comp-nargs-p callee-in-unit))
'callref
'call))
(args (if (eq call-type 'callref)
args
(fill-args args maxarg))))
`(,call-type ,callee ,@args)))
;; Intra compilation unit procedure call optimization.
;; Attention speed 3 triggers that for non self calls too!!
((or (eq callee self)
(and (>= comp-speed 3)
callee-in-unit))
(let* ((func-args (comp-func-args callee-in-unit))
(nargs (comp-nargs-p func-args))
(call-type (if nargs 'direct-callref 'direct-call))
(args (if (eq call-type 'direct-callref)
args
(fill-args args (comp-args-max func-args)))))
`(,call-type ,callee ,@args)))
((comp-type-hint-p callee)
`(call ,callee ,@args)))))))
(defun comp-call-optim-func ()
"Perform the trampoline call optimization for the current function."
(cl-loop
with self = (comp-func-name comp-func)
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn-cell on (comp-block-insns b)
for insn = (car insn-cell)
do (pcase insn
(`(set ,lval (callref funcall ,f . ,rest))
(when-let ((new-form (comp-call-optim-form-call
(comp-mvar-constant f) rest self)))
(setcar insn-cell `(set ,lval ,new-form))))
(`(callref funcall ,f . ,rest)
(when-let ((new-form (comp-call-optim-form-call
(comp-mvar-constant f) rest self)))
(setcar insn-cell new-form)))))))
(defun comp-call-optim (_)
"Try to optimize out funcall trampoline usage when possible."
(when (>= comp-speed 2)
(maphash (lambda (_ f)
(let ((comp-func f))
(comp-call-optim-func)))
(comp-ctxt-funcs-h comp-ctxt))))
;;; Dead code elimination pass specific code.
;; This simple pass try to eliminate insns became useful after propagation.
;; Even if gcc would take care of this is good to perform this here
;; in the hope of removing memory references.
;;
;; This pass can be run as last optim.
(defun comp-collect-mvar-ids (insn)
"Collect the m-var unique identifiers into INSN."
(cl-loop for x in insn
if (consp x)
append (comp-collect-mvar-ids x)
else
when (comp-mvar-p x)
collect (comp-mvar-id x)))
(defun comp-dead-assignments-func ()
"Clean-up dead assignments into current function.
Return the list of m-var ids nuked."
(let ((l-vals ())
(r-vals ()))
;; Collect used r and l-values.
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn in (comp-block-insns b)
for (op arg0 . rest) = insn
if (comp-set-op-p op)
do (push (comp-mvar-id arg0) l-vals)
(setf r-vals (nconc (comp-collect-mvar-ids rest) r-vals))
else
do (setf r-vals (nconc (comp-collect-mvar-ids insn) r-vals))))
;; Every l-value appearing that does not appear as r-value has no right to
;; exist and gets nuked.
(let ((nuke-list (cl-set-difference l-vals r-vals)))
(comp-log (format "Function %s\nl-vals %s\nr-vals %s\nNuking ids: %s\n"
(comp-func-name comp-func)
l-vals
r-vals
nuke-list)
3)
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn-cell on (comp-block-insns b)
for insn = (car insn-cell)
for (op arg0 rest) = insn
when (and (comp-set-op-p op)
(memq (comp-mvar-id arg0) nuke-list))
do (setcar insn-cell
(if (comp-limple-insn-call-p rest)
rest
`(comment ,(format "optimized out: %s"
insn))))))
nuke-list)))
(defun comp-remove-type-hints-func ()
"Remove type hints from the current function.
These are substituted with a normal 'set' op."
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn-cell on (comp-block-insns b)
for insn = (car insn-cell)
do (pcase insn
(`(set ,l-val (call ,(pred comp-type-hint-p) ,r-val))
(setcar insn-cell `(set ,l-val ,r-val)))))))
(defun comp-dead-code (_)
"Dead code elimination."
(when (>= comp-speed 2)
(maphash (lambda (_ f)
(let ((comp-func f))
;; FIXME remove the following condition when tested.
(unless (comp-func-has-non-local comp-func)
(cl-loop
for i from 1
while (comp-dead-assignments-func)
finally (comp-log (format "dead code rm run %d times\n" i) 2)
(comp-log-func comp-func 3))
(comp-remove-type-hints-func)
(comp-log-func comp-func 3))))
(comp-ctxt-funcs-h comp-ctxt))))
;;; Tail Call Optimization pass specific code.
(defun comp-form-tco-call-seq (args)
"Generate a tco sequence for ARGS."
`(,@(cl-loop for arg in args
for i from 0
collect `(set ,(make-comp-mvar :slot i) ,arg))
(jump bb_0)))
(defun comp-tco-func ()
"Try to pattern match and perform TCO within the current function."
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
named in-the-basic-block
for insns-seq on (comp-block-insns b)
do (pcase insns-seq
(`((set ,l-val (direct-call ,func . ,args))
(comment ,_comment)
(return ,ret-val))
(when (and (eq func (comp-func-name comp-func))
(eq l-val ret-val))
(let ((tco-seq (comp-form-tco-call-seq args)))
(setf (car insns-seq) (car tco-seq)
(cdr insns-seq) (cdr tco-seq)
(comp-func-ssa-status comp-func) 'dirty)
(cl-return-from in-the-basic-block))))))))
(defun comp-tco (_)
"Simple peephole pass performing self TCO."
(when (>= comp-speed 3)
(maphash (lambda (_ f)
(let ((comp-func f))
(unless (comp-func-has-non-local comp-func)
(comp-tco-func)
(comp-log-func comp-func 3))))
(comp-ctxt-funcs-h comp-ctxt))))
;;; Final pass specific code.
(defun comp-finalize-container (cont)
"Finalize data container CONT."
(setf (comp-data-container-l cont)
(cl-loop with h = (comp-data-container-idx cont)
for obj each hash-keys of h
for i from 0
do (puthash obj i h)
collect obj)))
(defun comp-finalize-relocs ()
"Finalize data containers for each relocation class.
Remove immediate duplicates within relocation classes.
Update all insn accordingly."
;; Symbols imported by C inlined functions. We do this here because
;; is better to add all objs to the relocation containers before we
;; compacting them.
(mapc #'comp-add-const-to-relocs '(nil t consp listp))
(let* ((d-default (comp-ctxt-d-default comp-ctxt))
(d-default-idx (comp-data-container-idx d-default))
(d-impure (comp-ctxt-d-impure comp-ctxt))
(d-impure-idx (comp-data-container-idx d-impure))
(d-ephemeral (comp-ctxt-d-ephemeral comp-ctxt))
(d-ephemeral-idx (comp-data-container-idx d-ephemeral)))
;; Remove things in d-impure that are already in d-default.
(cl-loop for obj being each hash-keys of d-impure-idx
when (gethash obj d-default-idx)
do (remhash obj d-impure-idx))
;; Remove things in d-ephemeral that are already in d-default or
;; d-impure.
(cl-loop for obj being each hash-keys of d-ephemeral-idx
when (or (gethash obj d-default-idx) (gethash obj d-impure-idx))
do (remhash obj d-ephemeral-idx))
;; Fix-up indexes in each relocation class and fill corresponding
;; reloc lists.
(mapc #'comp-finalize-container (list d-default d-impure d-ephemeral))))
(defun comp-compile-ctxt-to-file (name)
"Compile as native code the current context naming it NAME.
Prepare every function for final compilation and drive the C back-end."
(let ((dir (file-name-directory name)))
(comp-finalize-relocs)
(unless (file-exists-p dir)
;; In case it's created in the meanwhile.
(ignore-error 'file-already-exists
(make-directory dir)))
(unless comp-dry-run
(comp--compile-ctxt-to-file name))))
(defun comp-final (_)
"Final pass driving the C back-end for code emission."
(let (compile-result)
(maphash (lambda (_ f)
(comp-log-func f 1))
(comp-ctxt-funcs-h comp-ctxt))
(comp--init-ctxt)
(unwind-protect
(setf compile-result
(comp-compile-ctxt-to-file (comp-ctxt-output comp-ctxt)))
(and (comp--release-ctxt)
compile-result))))
;;; Compiler type hints.
;; These are public entry points be used in user code to give comp suggestion
;; about types.
;; These can be used to implement CL style 'the', 'declare' or something like.
;; Note: types will propagates.
;; WARNING: At speed >= 2 type checking is not performed anymore and suggestions
;; are assumed just to be true. Use with extreme caution...
(defun comp-hint-fixnum (x)
(unless (fixnump x)
(signal 'wrong-type-argument x)))
(defun comp-hint-cons (x)
(unless (consp x)
(signal 'wrong-type-argument x)))
;; Some entry point support code.
(defvar comp-files-queue ()
"List of Elisp files to be compiled.")
(defvar comp-async-processes ()
"List of running async compilation processes.")
(defun comp-async-runnings ()
"Return the number of async compilations currently running.
This function has the side effect of cleaning-up finished
processes from `comp-async-processes'"
(setf comp-async-processes
(cl-delete-if-not #'process-live-p comp-async-processes))
(length comp-async-processes))
(let (num-cpus)
(defun comp-effective-async-max-jobs ()
"Compute the effective number of async jobs."
(if (zerop comp-async-jobs-number)
(or num-cpus
(setf num-cpus
;; Half of the CPUs or at least one.
;; FIXME portable?
(max 1 (/ (string-to-number (shell-command-to-string "nproc"))
2))))
comp-async-jobs-number)))
(defun comp-run-async-workers ()
"Start compiling files from `comp-files-queue' asynchronously.
When compilation is finished, run `comp-async-all-done-hook' and
display a message."
(if (or comp-files-queue
(> (comp-async-runnings) 0))
(unless (>= (comp-async-runnings) (comp-effective-async-max-jobs))
(cl-loop
for source-file = (pop comp-files-queue)
while source-file
do (cl-assert (string-match-p (rx ".el" eos) source-file) nil
"`comp-files-queue' should be \".el\" files: %s"
source-file)
when (or comp-always-compile
(file-newer-than-file-p source-file (concat source-file "n")))
do (let* ((expr `(progn
(require 'comp)
(setf comp-speed ,comp-speed
comp-debug ,comp-debug
comp-verbose ,comp-verbose
load-path ',load-path)
(message "Compiling %s..." ,source-file)
(native-compile ,source-file)))
(process (make-process
:name (concat "Compiling: " source-file)
:buffer (get-buffer-create comp-async-buffer-name)
:command (list
(expand-file-name invocation-name
invocation-directory)
"--batch" "--eval" (prin1-to-string expr))
:sentinel (lambda (process _event)
(run-hook-with-args
'comp-async-cu-done-hook
source-file)
(accept-process-output process)
(comp-run-async-workers)))))
(push process comp-async-processes))
when (>= (comp-async-runnings) (comp-effective-async-max-jobs))
do (cl-return)))
;; No files left to compile and all processes finished.
(let ((msg "Compilation finished."))
(run-hooks 'comp-async-all-done-hook)
(with-current-buffer (get-buffer-create comp-async-buffer-name)
(save-excursion
(goto-char (point-max))
(insert msg "\n")))
(message msg))))
;;; Compiler entry points.
;;;###autoload
(defun native-compile (function-or-file &optional with-late-load)
"Compile FUNCTION-OR-FILE into native code.
This is the entry-point for the Emacs Lisp native compiler.
FUNCTION-OR-FILE is a function symbol or a path to an Elisp file.
Return the compilation unit file name."
(unless (or (functionp function-or-file)
(stringp function-or-file))
(signal 'native-compiler-error
(list "Not a function symbol or file" function-or-file)))
(let* ((data function-or-file)
(comp-native-compiling t)
;; Have byte compiler signal an error when compilation fails.
(byte-compile-debug t)
(comp-ctxt
(make-comp-ctxt
:output
(if (symbolp function-or-file)
(make-temp-file (concat (symbol-name function-or-file) "-"))
(let* ((expanded-filename (expand-file-name function-or-file))
(output-dir (file-name-as-directory
(concat (file-name-directory expanded-filename)
comp-native-path-postfix)))
(output-filename
(file-name-sans-extension
(file-name-nondirectory expanded-filename))))
(expand-file-name output-filename output-dir)))
:with-late-load with-late-load)))
(comp-log "\n\n" 1)
(condition-case err
(mapc (lambda (pass)
(comp-log (format "(%s) Running pass %s:\n"
function-or-file pass)
2)
(setf data (funcall pass data)))
comp-passes)
(native-compiler-error
;; Add source input.
(let ((err-val (cdr err)))
(signal (car err) (if (consp err-val)
(cons function-or-file err-val)
(list function-or-file err-val))))))
data))
;;;###autoload
(defun batch-native-compile ()
"Run `native-compile' on remaining command-line arguments.
Ultra cheap impersonation of `batch-byte-compile'."
(mapc #'native-compile command-line-args-left))
;;;###autoload
(defun batch-byte-native-compile-for-bootstrap ()
"As `batch-byte-compile' but used for booststrap.
Always generate elc files too and handle native compiler expected errors."
(let ((byte-native-for-bootstrap t)
(byte-to-native-output-file nil))
(unwind-protect
(condition-case _
(batch-native-compile)
(native-compiler-error-dyn-func)
(native-compiler-error-empty-byte))
(pcase byte-to-native-output-file
(`(,tempfile . ,target-file)
(rename-file tempfile target-file t))))))
;;;###autoload
(defun native-compile-async (paths recursively)
"Compile PATHS asynchronously.
PATHS is one path or a list of paths to files or directories.
`comp-async-jobs-number' specifies the number of (commands) to
run simultaneously. If RECURSIVELY, recurse into subdirectories
of given directories."
(unless (listp paths)
(setf paths (list paths)))
(let (files)
(dolist (path paths)
(cond ((file-directory-p path)
(dolist (file (if recursively
(directory-files-recursively path (rx ".el" eos))
(directory-files path t (rx ".el" eos))))
(push file files)))
((file-exists-p path) (push path files))
(t (signal 'native-compiler-error
(list "Path not a file nor directory" path)))))
(dolist (file files)
(add-to-list 'comp-files-queue file t))
(when (zerop (comp-async-runnings))
(comp-run-async-workers))
(message "Compilation started.")))
(provide 'comp)
;;; comp.el ends here
|