1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
/*
* Copyright 2020 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef WABT_INTERP_MATH_H_
#define WABT_INTERP_MATH_H_
#include <cmath>
#include <limits>
#include <string>
#include <type_traits>
#if COMPILER_IS_MSVC
#include <emmintrin.h>
#include <immintrin.h>
#endif
#include "src/common.h"
#include "src/interp/interp.h"
namespace wabt {
namespace interp {
template <
typename T,
typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
bool WABT_VECTORCALL IsNaN(T val) {
return false;
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0>
bool WABT_VECTORCALL IsNaN(T val) {
return std::isnan(val);
}
template <
typename T,
typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
T WABT_VECTORCALL CanonNaN(T val) {
return val;
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0>
T WABT_VECTORCALL CanonNaN(T val) {
if (WABT_UNLIKELY(std::isnan(val))) {
return std::numeric_limits<f32>::quiet_NaN();
}
return val;
}
template <typename T> T ShiftMask(T val) { return val & (sizeof(T)*8-1); }
template <typename T> bool WABT_VECTORCALL IntEqz(T val) { return val == 0; }
template <typename T> bool WABT_VECTORCALL Eq(T lhs, T rhs) { return lhs == rhs; }
template <typename T> bool WABT_VECTORCALL Ne(T lhs, T rhs) { return lhs != rhs; }
template <typename T> bool WABT_VECTORCALL Lt(T lhs, T rhs) { return lhs < rhs; }
template <typename T> bool WABT_VECTORCALL Le(T lhs, T rhs) { return lhs <= rhs; }
template <typename T> bool WABT_VECTORCALL Gt(T lhs, T rhs) { return lhs > rhs; }
template <typename T> bool WABT_VECTORCALL Ge(T lhs, T rhs) { return lhs >= rhs; }
template <typename T> T WABT_VECTORCALL IntClz(T val) { return Clz(val); }
template <typename T> T WABT_VECTORCALL IntCtz(T val) { return Ctz(val); }
template <typename T> T WABT_VECTORCALL IntPopcnt(T val) { return Popcount(val); }
template <typename T> T WABT_VECTORCALL IntNot(T val) { return ~val; }
template <typename T> T WABT_VECTORCALL IntNeg(T val) { return ~val + 1; }
template <typename T> T WABT_VECTORCALL Add(T lhs, T rhs) { return CanonNaN(lhs + rhs); }
template <typename T> T WABT_VECTORCALL Sub(T lhs, T rhs) { return CanonNaN(lhs - rhs); }
template <typename T> T WABT_VECTORCALL IntAnd(T lhs, T rhs) { return lhs & rhs; }
template <typename T> T WABT_VECTORCALL IntOr(T lhs, T rhs) { return lhs | rhs; }
template <typename T> T WABT_VECTORCALL IntXor(T lhs, T rhs) { return lhs ^ rhs; }
template <typename T> T WABT_VECTORCALL IntShl(T lhs, T rhs) { return lhs << ShiftMask(rhs); }
template <typename T> T WABT_VECTORCALL IntShr(T lhs, T rhs) { return lhs >> ShiftMask(rhs); }
template <typename T> T WABT_VECTORCALL IntMin(T lhs, T rhs) { return std::min(lhs, rhs); }
template <typename T> T WABT_VECTORCALL IntMax(T lhs, T rhs) { return std::max(lhs, rhs); }
template <typename T> T WABT_VECTORCALL IntAndNot(T lhs, T rhs) { return lhs & ~rhs; }
template <typename T> T WABT_VECTORCALL IntAvgr(T lhs, T rhs) { return (lhs + rhs + 1) / 2; }
template <typename T> T WABT_VECTORCALL Xchg(T lhs, T rhs) { return rhs; }
// This is a wrapping absolute value function, so a negative number that is not
// representable as a positive number will be unchanged (e.g. abs(-128) = 128).
//
// Note that std::abs() does not have this behavior (e.g. abs(-128) is UB).
// Similarly, using unary minus is also UB.
template <typename T>
T WABT_VECTORCALL IntAbs(T val) {
static_assert(std::is_unsigned<T>::value, "T must be unsigned.");
const auto signbit = T(-1) << (sizeof(T) * 8 - 1);
return (val & signbit) ? ~val + 1 : val;
}
// Because of the integer promotion rules [1], any value of a type T which is
// smaller than `int` will be converted to an `int`, as long as `int` can hold
// any value of type T.
//
// So type `u16` will be promoted to `int`, since all values can be stored in
// an int. Unfortunately, the product of two `u16` values cannot always be
// stored in an `int` (e.g. 65535 * 65535). This triggers an error in UBSan.
//
// As a result, we make sure to promote the type ahead of time for `u16`. Note
// that this isn't a problem for any other unsigned types.
//
// [1]; https://en.cppreference.com/w/cpp/language/implicit_conversion#Integral_promotion
template <typename T> struct PromoteMul { using type = T; };
template <> struct PromoteMul<u16> { using type = u32; };
template <typename T>
T WABT_VECTORCALL Mul(T lhs, T rhs) {
using U = typename PromoteMul<T>::type;
return CanonNaN(U(lhs) * U(rhs));
}
template <typename T> struct Mask { using Type = T; };
template <> struct Mask<f32> { using Type = u32; };
template <> struct Mask<f64> { using Type = u64; };
template <typename T> typename Mask<T>::Type WABT_VECTORCALL EqMask(T lhs, T rhs) { return lhs == rhs ? -1 : 0; }
template <typename T> typename Mask<T>::Type WABT_VECTORCALL NeMask(T lhs, T rhs) { return lhs != rhs ? -1 : 0; }
template <typename T> typename Mask<T>::Type WABT_VECTORCALL LtMask(T lhs, T rhs) { return lhs < rhs ? -1 : 0; }
template <typename T> typename Mask<T>::Type WABT_VECTORCALL LeMask(T lhs, T rhs) { return lhs <= rhs ? -1 : 0; }
template <typename T> typename Mask<T>::Type WABT_VECTORCALL GtMask(T lhs, T rhs) { return lhs > rhs ? -1 : 0; }
template <typename T> typename Mask<T>::Type WABT_VECTORCALL GeMask(T lhs, T rhs) { return lhs >= rhs ? -1 : 0; }
template <typename T>
T WABT_VECTORCALL IntRotl(T lhs, T rhs) {
return (lhs << ShiftMask(rhs)) | (lhs >> ShiftMask<T>(0 - rhs));
}
template <typename T>
T WABT_VECTORCALL IntRotr(T lhs, T rhs) {
return (lhs >> ShiftMask(rhs)) | (lhs << ShiftMask<T>(0 - rhs));
}
// i{32,64}.{div,rem}_s are special-cased because they trap when dividing the
// max signed value by -1. The modulo operation on x86 uses the same
// instruction to generate the quotient and the remainder.
template <typename T,
typename std::enable_if<std::is_signed<T>::value, int>::type = 0>
bool IsNormalDivRem(T lhs, T rhs) {
return !(lhs == std::numeric_limits<T>::min() && rhs == -1);
}
template <typename T,
typename std::enable_if<!std::is_signed<T>::value, int>::type = 0>
bool IsNormalDivRem(T lhs, T rhs) {
return true;
}
template <typename T>
RunResult WABT_VECTORCALL IntDiv(T lhs, T rhs, T* out, std::string* out_msg) {
if (WABT_UNLIKELY(rhs == 0)) {
*out_msg = "integer divide by zero";
return RunResult::Trap;
}
if (WABT_LIKELY(IsNormalDivRem(lhs, rhs))) {
*out = lhs / rhs;
return RunResult::Ok;
} else {
*out_msg = "integer overflow";
return RunResult::Trap;
}
}
template <typename T>
RunResult WABT_VECTORCALL IntRem(T lhs, T rhs, T* out, std::string* out_msg) {
if (WABT_UNLIKELY(rhs == 0)) {
*out_msg = "integer divide by zero";
return RunResult::Trap;
}
if (WABT_LIKELY(IsNormalDivRem(lhs, rhs))) {
*out = lhs % rhs;
} else {
*out = 0;
}
return RunResult::Ok;
}
#if COMPILER_IS_MSVC
template <typename T> T WABT_VECTORCALL FloatAbs(T val);
template <typename T> T WABT_VECTORCALL FloatCopysign(T lhs, T rhs);
// Don't use std::{abs,copysign} directly on MSVC, since that seems to lose
// the NaN tag.
template <>
inline f32 WABT_VECTORCALL FloatAbs(f32 val) {
return _mm_cvtss_f32(_mm_and_ps(
_mm_set1_ps(val), _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff))));
}
template <>
inline f64 WABT_VECTORCALL FloatAbs(f64 val) {
return _mm_cvtsd_f64(
_mm_and_pd(_mm_set1_pd(val),
_mm_castsi128_pd(_mm_set1_epi64x(0x7fffffffffffffffull))));
}
template <>
inline f32 WABT_VECTORCALL FloatCopysign(f32 lhs, f32 rhs) {
return _mm_cvtss_f32(
_mm_or_ps(_mm_and_ps(_mm_set1_ps(lhs),
_mm_castsi128_ps(_mm_set1_epi32(0x7fffffff))),
_mm_and_ps(_mm_set1_ps(rhs),
_mm_castsi128_ps(_mm_set1_epi32(0x80000000)))));
}
template <>
inline f64 WABT_VECTORCALL FloatCopysign(f64 lhs, f64 rhs) {
return _mm_cvtsd_f64(_mm_or_pd(
_mm_and_pd(_mm_set1_pd(lhs),
_mm_castsi128_pd(_mm_set1_epi64x(0x7fffffffffffffffull))),
_mm_and_pd(_mm_set1_pd(rhs),
_mm_castsi128_pd(_mm_set1_epi64x(0x8000000000000000ull)))));
}
#else
template <typename T>
T WABT_VECTORCALL FloatAbs(T val) {
return std::abs(val);
}
template <typename T>
T WABT_VECTORCALL FloatCopysign(T lhs, T rhs) {
return std::copysign(lhs, rhs);
}
#endif
#if COMPILER_IS_MSVC
#else
#endif
template <typename T> T WABT_VECTORCALL FloatNeg(T val) { return -val; }
template <typename T> T WABT_VECTORCALL FloatCeil(T val) { return CanonNaN(std::ceil(val)); }
template <typename T> T WABT_VECTORCALL FloatFloor(T val) { return CanonNaN(std::floor(val)); }
template <typename T> T WABT_VECTORCALL FloatTrunc(T val) { return CanonNaN(std::trunc(val)); }
template <typename T> T WABT_VECTORCALL FloatNearest(T val) { return CanonNaN(std::nearbyint(val)); }
template <typename T> T WABT_VECTORCALL FloatSqrt(T val) { return CanonNaN(std::sqrt(val)); }
template <typename T>
T WABT_VECTORCALL FloatDiv(T lhs, T rhs) {
// IEE754 specifies what should happen when dividing a float by zero, but
// C/C++ says it is undefined behavior.
if (WABT_UNLIKELY(rhs == 0)) {
return std::isnan(lhs) || lhs == 0
? std::numeric_limits<T>::quiet_NaN()
: ((std::signbit(lhs) ^ std::signbit(rhs))
? -std::numeric_limits<T>::infinity()
: std::numeric_limits<T>::infinity());
}
return CanonNaN(lhs / rhs);
}
template <typename T>
T WABT_VECTORCALL FloatMin(T lhs, T rhs) {
if (WABT_UNLIKELY(std::isnan(lhs) || std::isnan(rhs))) {
return std::numeric_limits<T>::quiet_NaN();
} else if (WABT_UNLIKELY(lhs == 0 && rhs == 0)) {
return std::signbit(lhs) ? lhs : rhs;
} else {
return std::min(lhs, rhs);
}
}
template <typename T>
T WABT_VECTORCALL FloatPMin(T lhs, T rhs) {
return std::min(lhs, rhs);
}
template <typename T>
T WABT_VECTORCALL FloatMax(T lhs, T rhs) {
if (WABT_UNLIKELY(std::isnan(lhs) || std::isnan(rhs))) {
return std::numeric_limits<T>::quiet_NaN();
} else if (WABT_UNLIKELY(lhs == 0 && rhs == 0)) {
return std::signbit(lhs) ? rhs : lhs;
} else {
return std::max(lhs, rhs);
}
}
template <typename T>
T WABT_VECTORCALL FloatPMax(T lhs, T rhs) {
return std::max(lhs, rhs);
}
template <typename R, typename T> bool WABT_VECTORCALL CanConvert(T val) { return true; }
template <> inline bool WABT_VECTORCALL CanConvert<s32, f32>(f32 val) { return val >= -2147483648.f && val < 2147483648.f; }
template <> inline bool WABT_VECTORCALL CanConvert<s32, f64>(f64 val) { return val > -2147483649. && val < 2147483648.; }
template <> inline bool WABT_VECTORCALL CanConvert<u32, f32>(f32 val) { return val > -1.f && val < 4294967296.f; }
template <> inline bool WABT_VECTORCALL CanConvert<u32, f64>(f64 val) { return val > -1. && val < 4294967296.; }
template <> inline bool WABT_VECTORCALL CanConvert<s64, f32>(f32 val) { return val >= -9223372036854775808.f && val < 9223372036854775808.f; }
template <> inline bool WABT_VECTORCALL CanConvert<s64, f64>(f64 val) { return val >= -9223372036854775808. && val < 9223372036854775808.; }
template <> inline bool WABT_VECTORCALL CanConvert<u64, f32>(f32 val) { return val > -1.f && val < 18446744073709551616.f; }
template <> inline bool WABT_VECTORCALL CanConvert<u64, f64>(f64 val) { return val > -1. && val < 18446744073709551616.; }
template <typename R, typename T>
R WABT_VECTORCALL Convert(T val) {
assert((CanConvert<R, T>(val)));
return static_cast<R>(val);
}
template <>
inline f32 WABT_VECTORCALL Convert(f64 val) {
// The WebAssembly rounding mode means that these values (which are > F32_MAX)
// should be rounded to F32_MAX and not set to infinity. Unfortunately, UBSAN
// complains that the value is not representable as a float, so we'll special
// case them.
const f64 kMin = 3.4028234663852886e38;
const f64 kMax = 3.4028235677973366e38;
if (WABT_LIKELY(val >= -kMin && val <= kMin)) {
return val;
} else if (WABT_UNLIKELY(val > kMin && val < kMax)) {
return std::numeric_limits<f32>::max();
} else if (WABT_UNLIKELY(val > -kMax && val < -kMin)) {
return -std::numeric_limits<f32>::max();
} else if (WABT_UNLIKELY(std::isnan(val))) {
return std::numeric_limits<f32>::quiet_NaN();
} else {
return std::copysign(std::numeric_limits<f32>::infinity(), val);
}
}
template <>
inline f32 WABT_VECTORCALL Convert(u64 val) {
return wabt_convert_uint64_to_float(val);
}
template <>
inline f64 WABT_VECTORCALL Convert(u64 val) {
return wabt_convert_uint64_to_double(val);
}
template <>
inline f32 WABT_VECTORCALL Convert(s64 val) {
return wabt_convert_int64_to_float(val);
}
template <>
inline f64 WABT_VECTORCALL Convert(s64 val) {
return wabt_convert_int64_to_double(val);
}
template <typename T, int N>
T WABT_VECTORCALL IntExtend(T val) {
// Hacker's delight 2.6 - sign extension
auto bit = T{1} << N;
auto mask = (bit << 1) - 1;
return ((val & mask) ^ bit) - bit;
}
template <typename R, typename T>
R WABT_VECTORCALL IntTruncSat(T val) {
if (WABT_UNLIKELY(std::isnan(val))) {
return 0;
} else if (WABT_UNLIKELY(!CanConvert<R>(val))) {
return std::signbit(val) ? std::numeric_limits<R>::min()
: std::numeric_limits<R>::max();
} else {
return static_cast<R>(val);
}
}
template <typename T> struct SatPromote;
template <> struct SatPromote<s8> { using type = s32; };
template <> struct SatPromote<s16> { using type = s32; };
template <> struct SatPromote<u8> { using type = s32; };
template <> struct SatPromote<u16> { using type = s32; };
template <typename R, typename T>
R WABT_VECTORCALL Saturate(T val) {
static_assert(sizeof(R) < sizeof(T), "Incorrect types for Saturate");
const T min = std::numeric_limits<R>::min();
const T max = std::numeric_limits<R>::max();
return val > max ? max : val < min ? min : val;
}
template <typename T, typename U = typename SatPromote<T>::type>
T WABT_VECTORCALL IntAddSat(T lhs, T rhs) {
return Saturate<T, U>(lhs + rhs);
}
template <typename T, typename U = typename SatPromote<T>::type>
T WABT_VECTORCALL IntSubSat(T lhs, T rhs) {
return Saturate<T, U>(lhs - rhs);
}
template <typename T>
T WABT_VECTORCALL SaturatingRoundingQMul(T lhs, T rhs) {
constexpr int size_in_bits = sizeof(T) * 8;
int round_const = 1 << (size_in_bits - 2);
int64_t product = lhs * rhs;
product += round_const;
product >>= (size_in_bits - 1);
return Saturate<T, int64_t>(product);
}
} // namespace interp
} // namespace wabt
#endif // WABT_INTERP_MATH_H_
|