summaryrefslogtreecommitdiff
path: root/src/literal.cc
blob: 8e025ace36908844ddc9f569b3f7da986e591343 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "literal.h"

#include <cassert>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <cstring>

#define HEX_DIGIT_BITS 4

/* The PLUS_ONE values are used because normal IEEE floats have an implicit
 * leading one, so they have an additional bit of precision. */

#define F32_SIGN_SHIFT 31
#define F32_SIG_BITS 23
#define F32_SIG_MASK 0x7fffff
#define F32_SIG_PLUS_ONE_BITS 24
#define F32_SIG_PLUS_ONE_MASK 0xffffff
#define F32_EXP_MASK 0xff
#define F32_MIN_EXP -127
#define F32_MAX_EXP 128
#define F32_EXP_BIAS 127
#define F32_QUIET_NAN_TAG 0x400000

#define F64_SIGN_SHIFT 63
#define F64_SIG_BITS 52
#define F64_SIG_MASK 0xfffffffffffffULL
#define F64_SIG_PLUS_ONE_BITS 53
#define F64_SIG_PLUS_ONE_MASK 0x1fffffffffffffULL
#define F64_EXP_MASK 0x7ff
#define F64_MIN_EXP -1023
#define F64_MAX_EXP 1024
#define F64_EXP_BIAS 1023
#define F64_QUIET_NAN_TAG 0x8000000000000ULL

namespace wabt {

static const char s_hex_digits[] = "0123456789abcdef";

Result parse_hexdigit(char c, uint32_t* out) {
  if (static_cast<unsigned int>(c - '0') <= 9) {
    *out = c - '0';
    return Result::Ok;
  } else if (static_cast<unsigned int>(c - 'a') <= 6) {
    *out = 10 + (c - 'a');
    return Result::Ok;
  } else if (static_cast<unsigned int>(c - 'A') <= 6) {
    *out = 10 + (c - 'A');
    return Result::Ok;
  }
  return Result::Error;
}

/* return 1 if the non-NULL-terminated string starting with |start| and ending
 with |end| starts with the NULL-terminated string |prefix|. */
static bool string_starts_with(const char* start,
                               const char* end,
                               const char* prefix) {
  while (start < end && *prefix) {
    if (*start != *prefix)
      return false;
    start++;
    prefix++;
  }
  return *prefix == 0;
}

Result parse_uint64(const char* s, const char* end, uint64_t* out) {
  if (s == end)
    return Result::Error;
  uint64_t value = 0;
  if (*s == '0' && s + 1 < end && s[1] == 'x') {
    s += 2;
    if (s == end)
      return Result::Error;
    for (; s < end; ++s) {
      uint32_t digit;
      if (WABT_FAILED(parse_hexdigit(*s, &digit)))
        return Result::Error;
      uint64_t old_value = value;
      value = value * 16 + digit;
      /* check for overflow */
      if (old_value > value)
        return Result::Error;
    }
  } else {
    for (; s < end; ++s) {
      uint32_t digit = (*s - '0');
      if (digit > 9)
        return Result::Error;
      uint64_t old_value = value;
      value = value * 10 + digit;
      /* check for overflow */
      if (old_value > value)
        return Result::Error;
    }
  }
  if (s != end)
    return Result::Error;
  *out = value;
  return Result::Ok;
}

Result parse_int64(const char* s,
                   const char* end,
                   uint64_t* out,
                   ParseIntType parse_type) {
  bool has_sign = false;
  if (*s == '-' || *s == '+') {
    if (parse_type == ParseIntType::UnsignedOnly)
      return Result::Error;
    if (*s == '-')
      has_sign = true;
    s++;
  }
  uint64_t value = 0;
  Result result = parse_uint64(s, end, &value);
  if (has_sign) {
    /* abs(INT64_MIN) == INT64_MAX + 1 */
    if (value > static_cast<uint64_t>(INT64_MAX) + 1)
      return Result::Error;
    value = UINT64_MAX - value + 1;
  }
  *out = value;
  return result;
}

Result parse_int32(const char* s,
                   const char* end,
                   uint32_t* out,
                   ParseIntType parse_type) {
  uint64_t value;
  bool has_sign = false;
  if (*s == '-' || *s == '+') {
    if (parse_type == ParseIntType::UnsignedOnly)
      return Result::Error;
    if (*s == '-')
      has_sign = true;
    s++;
  }
  if (WABT_FAILED(parse_uint64(s, end, &value)))
    return Result::Error;

  if (has_sign) {
    /* abs(INT32_MIN) == INT32_MAX + 1 */
    if (value > static_cast<uint64_t>(INT32_MAX) + 1)
      return Result::Error;
    value = UINT32_MAX - value + 1;
  } else {
    if (value > static_cast<uint64_t>(UINT32_MAX))
      return Result::Error;
  }
  *out = static_cast<uint32_t>(value);
  return Result::Ok;
}

/* floats */
static uint32_t make_float(bool sign, int exp, uint32_t sig) {
  assert(exp >= F32_MIN_EXP && exp <= F32_MAX_EXP);
  assert(sig <= F32_SIG_MASK);
  return (static_cast<uint32_t>(sign) << F32_SIGN_SHIFT) |
         (static_cast<uint32_t>(exp + F32_EXP_BIAS) << F32_SIG_BITS) | sig;
}

static uint32_t shift_float_and_round_to_nearest(uint32_t significand,
                                                 int shift) {
  assert(shift > 0);
  /* round ties to even */
  if (significand & (1U << shift))
    significand += 1U << (shift - 1);
  significand >>= shift;
  return significand;
}

static Result parse_float_nan(const char* s,
                              const char* end,
                              uint32_t* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(string_starts_with(s, end, "nan"));
  s += 3;

  uint32_t tag;
  if (s != end) {
    tag = 0;
    assert(string_starts_with(s, end, ":0x"));
    s += 3;

    for (; s < end; ++s) {
      uint32_t digit;
      if (WABT_FAILED(parse_hexdigit(*s, &digit)))
        return Result::Error;
      tag = tag * 16 + digit;
      /* check for overflow */
      if (tag > F32_SIG_MASK)
        return Result::Error;
    }

    /* NaN cannot have a zero tag, that is reserved for infinity */
    if (tag == 0)
      return Result::Error;
  } else {
    tag = F32_QUIET_NAN_TAG;
  }

  *out_bits = make_float(is_neg, F32_MAX_EXP, tag);
  return Result::Ok;
}

static void parse_float_hex(const char* s,
                            const char* end,
                            uint32_t* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(string_starts_with(s, end, "0x"));
  s += 2;

  /* loop over the significand; everything up to the 'p'.
   this code is a bit nasty because we want to support extra zeroes anywhere
   without having to use many significand bits.
   e.g.
   0x00000001.0p0 => significand = 1, significand_exponent = 0
   0x10000000.0p0 => significand = 1, significand_exponent = 28
   0x0.000001p0 => significand = 1, significand_exponent = -24
   */
  bool seen_dot = false;
  uint32_t significand = 0;
  /* how much to shift |significand| if a non-zero value is appended */
  int significand_shift = 0;
  int significand_bits = 0;     /* bits of |significand| */
  int significand_exponent = 0; /* exponent adjustment due to dot placement */
  for (; s < end; ++s) {
    uint32_t digit;
    if (*s == '.') {
      if (significand != 0)
        significand_exponent += significand_shift;
      significand_shift = 0;
      seen_dot = true;
      continue;
    } else if (WABT_FAILED(parse_hexdigit(*s, &digit))) {
      break;
    }
    significand_shift += HEX_DIGIT_BITS;
    if (digit != 0 && (significand == 0 ||
                       significand_bits + significand_shift <=
                           F32_SIG_BITS + 1 + HEX_DIGIT_BITS)) {
      if (significand != 0)
        significand <<= significand_shift;
      if (seen_dot)
        significand_exponent -= significand_shift;
      significand += digit;
      significand_shift = 0;
      significand_bits += HEX_DIGIT_BITS;
    }
  }

  if (!seen_dot)
    significand_exponent += significand_shift;

  if (significand == 0) {
    /* 0 or -0 */
    *out_bits = make_float(is_neg, F32_MIN_EXP, 0);
    return;
  }

  int exponent = 0;
  bool exponent_is_neg = false;
  if (s < end) {
    assert(*s == 'p');
    s++;
    /* exponent is always positive, but significand_exponent is signed.
     significand_exponent_add is negated if exponent will be negative, so it  can
     be easily summed to see if the exponent is too large (see below) */
    int significand_exponent_add = 0;
    if (*s == '-') {
      exponent_is_neg = true;
      significand_exponent_add = -significand_exponent;
      s++;
    } else if (*s == '+') {
      s++;
      significand_exponent_add = significand_exponent;
    }

    for (; s < end; ++s) {
      uint32_t digit = (*s - '0');
      assert(digit <= 9);
      exponent = exponent * 10 + digit;
      if (exponent + significand_exponent_add >= F32_MAX_EXP)
        break;
    }
  }

  if (exponent_is_neg)
    exponent = -exponent;

  significand_bits = sizeof(uint32_t) * 8 - wabt_clz_u32(significand);
  /* -1 for the implicit 1 bit of the significand */
  exponent += significand_exponent + significand_bits - 1;

  if (exponent >= F32_MAX_EXP) {
    /* inf or -inf */
    *out_bits = make_float(is_neg, F32_MAX_EXP, 0);
  } else if (exponent <= F32_MIN_EXP) {
    /* maybe subnormal */
    if (significand_bits > F32_SIG_BITS) {
      significand = shift_float_and_round_to_nearest(
          significand, significand_bits - F32_SIG_BITS);
    } else if (significand_bits < F32_SIG_BITS) {
      significand <<= (F32_SIG_BITS - significand_bits);
    }

    int shift = F32_MIN_EXP - exponent;
    if (shift < F32_SIG_BITS) {
      if (shift) {
        significand =
            shift_float_and_round_to_nearest(significand, shift) & F32_SIG_MASK;
      }
      exponent = F32_MIN_EXP;

      if (significand != 0) {
        *out_bits = make_float(is_neg, exponent, significand);
        return;
      }
    }

    /* not subnormal, too small; return 0 or -0 */
    *out_bits = make_float(is_neg, F32_MIN_EXP, 0);
  } else {
    /* normal value */
    if (significand_bits > F32_SIG_PLUS_ONE_BITS) {
      significand = shift_float_and_round_to_nearest(
          significand, significand_bits - F32_SIG_PLUS_ONE_BITS);
      if (significand > F32_SIG_PLUS_ONE_MASK)
        exponent++;
    } else if (significand_bits < F32_SIG_PLUS_ONE_BITS) {
      significand <<= (F32_SIG_PLUS_ONE_BITS - significand_bits);
    }

    *out_bits = make_float(is_neg, exponent, significand & F32_SIG_MASK);
  }
}

static void parse_float_infinity(const char* s,
                                 const char* end,
                                 uint32_t* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(string_starts_with(s, end, "inf"));  // Could be inf or infinity.
  *out_bits = make_float(is_neg, F32_MAX_EXP, 0);
}

Result parse_float(LiteralType literal_type,
                   const char* s,
                   const char* end,
                   uint32_t* out_bits) {
#if COMPILER_IS_MSVC
  if (literal_type == LiteralType::Int && string_starts_with(s, end, "0x"))
  {
    // Some MSVC crt implementation of strtof doesn't support hex strings
    literal_type = LiteralType::Hexfloat;
  }
#endif
  switch (literal_type) {
    case LiteralType::Int:
    case LiteralType::Float: {
      errno = 0;
      char* endptr;
      float value;
      value = strtof(s, &endptr);
      if (endptr != end ||
          ((value == 0 || value == HUGE_VALF || value == -HUGE_VALF) &&
           errno != 0))
        return Result::Error;

      memcpy(out_bits, &value, sizeof(value));
      return Result::Ok;
    }

    case LiteralType::Hexfloat:
      parse_float_hex(s, end, out_bits);
      return Result::Ok;

    case LiteralType::Infinity:
      parse_float_infinity(s, end, out_bits);
      return Result::Ok;

    case LiteralType::Nan:
      return parse_float_nan(s, end, out_bits);

    default:
      assert(0);
      return Result::Error;
  }
}

void write_float_hex(char* out, size_t size, uint32_t bits) {
  /* 1234567890123456 */
  /* -0x#.######p-### */
  /* -nan:0x###### */
  /* -infinity */
  char buffer[WABT_MAX_FLOAT_HEX];
  char* p = buffer;
  bool is_neg = (bits >> F32_SIGN_SHIFT);
  int exp = ((bits >> F32_SIG_BITS) & F32_EXP_MASK) - F32_EXP_BIAS;
  uint32_t sig = bits & F32_SIG_MASK;

  if (is_neg)
    *p++ = '-';
  if (exp == F32_MAX_EXP) {
    /* infinity or nan */
    if (sig == 0) {
      strcpy(p, "infinity");
      p += 8;
    } else {
      strcpy(p, "nan");
      p += 3;
      if (sig != F32_QUIET_NAN_TAG) {
        strcpy(p, ":0x");
        p += 3;
        /* skip leading zeroes */
        int num_nybbles = sizeof(uint32_t) * 8 / 4;
        while ((sig & 0xf0000000) == 0) {
          sig <<= 4;
          num_nybbles--;
        }
        while (num_nybbles) {
          uint32_t nybble = (sig >> (sizeof(uint32_t) * 8 - 4)) & 0xf;
          *p++ = s_hex_digits[nybble];
          sig <<= 4;
          --num_nybbles;
        }
      }
    }
  } else {
    bool is_zero = sig == 0 && exp == F32_MIN_EXP;
    strcpy(p, "0x");
    p += 2;
    *p++ = is_zero ? '0' : '1';

    /* shift sig up so the top 4-bits are at the top of the uint32 */
    sig <<= sizeof(uint32_t) * 8 - F32_SIG_BITS;

    if (sig) {
      if (exp == F32_MIN_EXP) {
        /* subnormal; shift the significand up, and shift out the implicit 1 */
        uint32_t leading_zeroes = wabt_clz_u32(sig);
        if (leading_zeroes < 31)
          sig <<= leading_zeroes + 1;
        else
          sig = 0;
        exp -= leading_zeroes;
      }

      *p++ = '.';
      while (sig) {
        uint32_t nybble = (sig >> (sizeof(uint32_t) * 8 - 4)) & 0xf;
        *p++ = s_hex_digits[nybble];
        sig <<= 4;
      }
    }
    *p++ = 'p';
    if (is_zero) {
      strcpy(p, "+0");
      p += 2;
    } else {
      if (exp < 0) {
        *p++ = '-';
        exp = -exp;
      } else {
        *p++ = '+';
      }
      if (exp >= 100)
        *p++ = '1';
      if (exp >= 10)
        *p++ = '0' + (exp / 10) % 10;
      *p++ = '0' + exp % 10;
    }
  }

  size_t len = p - buffer;
  if (len >= size)
    len = size - 1;
  memcpy(out, buffer, len);
  out[len] = '\0';
}

/* doubles */
static uint64_t make_double(bool sign, int exp, uint64_t sig) {
  assert(exp >= F64_MIN_EXP && exp <= F64_MAX_EXP);
  assert(sig <= F64_SIG_MASK);
  return (static_cast<uint64_t>(sign) << F64_SIGN_SHIFT) |
         (static_cast<uint64_t>(exp + F64_EXP_BIAS) << F64_SIG_BITS) | sig;
}

static uint64_t shift_double_and_round_to_nearest(uint64_t significand,
                                                  int shift) {
  assert(shift > 0);
  /* round ties to even */
  if (significand & (static_cast<uint64_t>(1) << shift))
    significand += static_cast<uint64_t>(1) << (shift - 1);
  significand >>= shift;
  return significand;
}

static Result parse_double_nan(const char* s,
                               const char* end,
                               uint64_t* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(string_starts_with(s, end, "nan"));
  s += 3;

  uint64_t tag;
  if (s != end) {
    tag = 0;
    if (!string_starts_with(s, end, ":0x"))
      return Result::Error;
    s += 3;

    for (; s < end; ++s) {
      uint32_t digit;
      if (WABT_FAILED(parse_hexdigit(*s, &digit)))
        return Result::Error;
      tag = tag * 16 + digit;
      /* check for overflow */
      if (tag > F64_SIG_MASK)
        return Result::Error;
    }

    /* NaN cannot have a zero tag, that is reserved for infinity */
    if (tag == 0)
      return Result::Error;
  } else {
    tag = F64_QUIET_NAN_TAG;
  }

  *out_bits = make_double(is_neg, F64_MAX_EXP, tag);
  return Result::Ok;
}

static void parse_double_hex(const char* s,
                             const char* end,
                             uint64_t* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(string_starts_with(s, end, "0x"));
  s += 2;

  /* see the similar comment in parse_float_hex */
  bool seen_dot = false;
  uint64_t significand = 0;
  /* how much to shift |significand| if a non-zero value is appended */
  int significand_shift = 0;
  int significand_bits = 0;     /* bits of |significand| */
  int significand_exponent = 0; /* exponent adjustment due to dot placement */
  for (; s < end; ++s) {
    uint32_t digit;
    if (*s == '.') {
      if (significand != 0)
        significand_exponent += significand_shift;
      significand_shift = 0;
      seen_dot = true;
      continue;
    } else if (WABT_FAILED(parse_hexdigit(*s, &digit))) {
      break;
    }
    significand_shift += HEX_DIGIT_BITS;
    if (digit != 0 && (significand == 0 ||
                       significand_bits + significand_shift <=
                           F64_SIG_BITS + 1 + HEX_DIGIT_BITS)) {
      if (significand != 0)
        significand <<= significand_shift;
      if (seen_dot)
        significand_exponent -= significand_shift;
      significand += digit;
      significand_shift = 0;
      significand_bits += HEX_DIGIT_BITS;
    }
  }

  if (!seen_dot)
    significand_exponent += significand_shift;

  if (significand == 0) {
    /* 0 or -0 */
    *out_bits = make_double(is_neg, F64_MIN_EXP, 0);
    return;
  }

  int exponent = 0;
  bool exponent_is_neg = false;
  if (s < end) {
    assert(*s == 'p');
    s++;

    /* exponent is always positive, but significand_exponent is signed.
     significand_exponent_add is negated if exponent will be negative, so it  can
     be easily summed to see if the exponent is too large (see below) */
    int significand_exponent_add = 0;
    if (*s == '-') {
      exponent_is_neg = true;
      significand_exponent_add = -significand_exponent;
      s++;
    } else if (*s == '+') {
      s++;
      significand_exponent_add = significand_exponent;
    }

    for (; s < end; ++s) {
      uint32_t digit = (*s - '0');
      assert(digit <= 9);
      exponent = exponent * 10 + digit;
      if (exponent + significand_exponent_add >= F64_MAX_EXP)
        break;
    }
  }

  if (exponent_is_neg)
    exponent = -exponent;

  significand_bits = sizeof(uint64_t) * 8 - wabt_clz_u64(significand);
  /* -1 for the implicit 1 bit of the significand */
  exponent += significand_exponent + significand_bits - 1;

  if (exponent >= F64_MAX_EXP) {
    /* inf or -inf */
    *out_bits = make_double(is_neg, F64_MAX_EXP, 0);
  } else if (exponent <= F64_MIN_EXP) {
    /* maybe subnormal */
    if (significand_bits > F64_SIG_BITS) {
      significand = shift_double_and_round_to_nearest(
          significand, significand_bits - F64_SIG_BITS);
    } else if (significand_bits < F64_SIG_BITS) {
      significand <<= (F64_SIG_BITS - significand_bits);
    }

    int shift = F64_MIN_EXP - exponent;
    if (shift < F64_SIG_BITS) {
      if (shift) {
        significand = shift_double_and_round_to_nearest(significand, shift) &
                      F64_SIG_MASK;
      }
      exponent = F64_MIN_EXP;

      if (significand != 0) {
        *out_bits = make_double(is_neg, exponent, significand);
        return;
      }
    }

    /* not subnormal, too small; return 0 or -0 */
    *out_bits = make_double(is_neg, F64_MIN_EXP, 0);
  } else {
    /* normal value */
    if (significand_bits > F64_SIG_PLUS_ONE_BITS) {
      significand = shift_double_and_round_to_nearest(
          significand, significand_bits - F64_SIG_PLUS_ONE_BITS);
      if (significand > F64_SIG_PLUS_ONE_MASK)
        exponent++;
    } else if (significand_bits < F64_SIG_PLUS_ONE_BITS) {
      significand <<= (F64_SIG_PLUS_ONE_BITS - significand_bits);
    }

    *out_bits = make_double(is_neg, exponent, significand & F64_SIG_MASK);
  }
}

static void parse_double_infinity(const char* s,
                                  const char* end,
                                  uint64_t* out_bits) {
  bool is_neg = false;
  if (*s == '-') {
    is_neg = true;
    s++;
  } else if (*s == '+') {
    s++;
  }
  assert(string_starts_with(s, end, "inf"));  // Could be inf or infinity.
  *out_bits = make_double(is_neg, F64_MAX_EXP, 0);
}

Result parse_double(LiteralType literal_type,
                    const char* s,
                    const char* end,
                    uint64_t* out_bits) {

#if COMPILER_IS_MSVC
  if (literal_type == LiteralType::Int && string_starts_with(s, end, "0x"))
  {
    // Some MSVC crt implementation of strtod doesn't support hex strings
    literal_type = LiteralType::Hexfloat;
  }
#endif
  switch (literal_type) {
    case LiteralType::Int:
    case LiteralType::Float: {
      errno = 0;
      char* endptr;
      double value;
      value = strtod(s, &endptr);
      if (endptr != end ||
          ((value == 0 || value == HUGE_VAL || value == -HUGE_VAL) &&
           errno != 0))
        return Result::Error;

      memcpy(out_bits, &value, sizeof(value));
      return Result::Ok;
    }

    case LiteralType::Hexfloat:
      parse_double_hex(s, end, out_bits);
      return Result::Ok;

    case LiteralType::Infinity:
      parse_double_infinity(s, end, out_bits);
      return Result::Ok;

    case LiteralType::Nan:
      return parse_double_nan(s, end, out_bits);

    default:
      assert(0);
      return Result::Error;
  }
}

void write_double_hex(char* out, size_t size, uint64_t bits) {
  /* 123456789012345678901234 */
  /* -0x#.#############p-#### */
  /* -nan:0x############# */
  /* -infinity */
  char buffer[WABT_MAX_DOUBLE_HEX];
  char* p = buffer;
  bool is_neg = (bits >> F64_SIGN_SHIFT);
  int exp = ((bits >> F64_SIG_BITS) & F64_EXP_MASK) - F64_EXP_BIAS;
  uint64_t sig = bits & F64_SIG_MASK;

  if (is_neg)
    *p++ = '-';
  if (exp == F64_MAX_EXP) {
    /* infinity or nan */
    if (sig == 0) {
      strcpy(p, "infinity");
      p += 8;
    } else {
      strcpy(p, "nan");
      p += 3;
      if (sig != F64_QUIET_NAN_TAG) {
        strcpy(p, ":0x");
        p += 3;
        /* skip leading zeroes */
        int num_nybbles = sizeof(uint64_t) * 8 / 4;
        while ((sig & 0xf000000000000000ULL) == 0) {
          sig <<= 4;
          num_nybbles--;
        }
        while (num_nybbles) {
          uint32_t nybble = (sig >> (sizeof(uint64_t) * 8 - 4)) & 0xf;
          *p++ = s_hex_digits[nybble];
          sig <<= 4;
          --num_nybbles;
        }
      }
    }
  } else {
    bool is_zero = sig == 0 && exp == F64_MIN_EXP;
    strcpy(p, "0x");
    p += 2;
    *p++ = is_zero ? '0' : '1';

    /* shift sig up so the top 4-bits are at the top of the uint32 */
    sig <<= sizeof(uint64_t) * 8 - F64_SIG_BITS;

    if (sig) {
      if (exp == F64_MIN_EXP) {
        /* subnormal; shift the significand up, and shift out the implicit 1 */
        uint32_t leading_zeroes = wabt_clz_u64(sig);
        if (leading_zeroes < 63)
          sig <<= leading_zeroes + 1;
        else
          sig = 0;
        exp -= leading_zeroes;
      }

      *p++ = '.';
      while (sig) {
        uint32_t nybble = (sig >> (sizeof(uint64_t) * 8 - 4)) & 0xf;
        *p++ = s_hex_digits[nybble];
        sig <<= 4;
      }
    }
    *p++ = 'p';
    if (is_zero) {
      strcpy(p, "+0");
      p += 2;
    } else {
      if (exp < 0) {
        *p++ = '-';
        exp = -exp;
      } else {
        *p++ = '+';
      }
      if (exp >= 1000)
        *p++ = '1';
      if (exp >= 100)
        *p++ = '0' + (exp / 100) % 10;
      if (exp >= 10)
        *p++ = '0' + (exp / 10) % 10;
      *p++ = '0' + exp % 10;
    }
  }

  size_t len = p - buffer;
  if (len >= size)
    len = size - 1;
  memcpy(out, buffer, len);
  out[len] = '\0';
}

}  // namespace wabt