diff options
author | Luca Sas <sas.luca.alex@gmail.com> | 2020-03-06 17:48:44 +0000 |
---|---|---|
committer | Luca Sas <sas.luca.alex@gmail.com> | 2020-03-06 17:48:44 +0000 |
commit | 581538a8b371c0a9003dc0f1bf081222b8c4fdd9 (patch) | |
tree | f5759a699424211d4a66e24365a596072818ab33 /libs/raylib/src/external/dr_flac.h | |
download | gamejam-slgj-2024-581538a8b371c0a9003dc0f1bf081222b8c4fdd9.tar.gz gamejam-slgj-2024-581538a8b371c0a9003dc0f1bf081222b8c4fdd9.tar.bz2 gamejam-slgj-2024-581538a8b371c0a9003dc0f1bf081222b8c4fdd9.zip |
Setup the project
Diffstat (limited to 'libs/raylib/src/external/dr_flac.h')
-rw-r--r-- | libs/raylib/src/external/dr_flac.h | 8933 |
1 files changed, 8933 insertions, 0 deletions
diff --git a/libs/raylib/src/external/dr_flac.h b/libs/raylib/src/external/dr_flac.h new file mode 100644 index 0000000..250d0bd --- /dev/null +++ b/libs/raylib/src/external/dr_flac.h @@ -0,0 +1,8933 @@ +/* +FLAC audio decoder. Choice of public domain or MIT-0. See license statements at the end of this file. +dr_flac - v0.11.10 - 2019-06-26 + +David Reid - mackron@gmail.com +*/ + +/* +USAGE +===== +dr_flac is a single-file library. To use it, do something like the following in one .c file. + #define DR_FLAC_IMPLEMENTATION + #include "dr_flac.h" + +You can then #include this file in other parts of the program as you would with any other header file. To decode audio data, +do something like the following: + + drflac* pFlac = drflac_open_file("MySong.flac"); + if (pFlac == NULL) { + // Failed to open FLAC file + } + + drflac_int32* pSamples = malloc(pFlac->totalPCMFrameCount * pFlac->channels * sizeof(drflac_int32)); + drflac_uint64 numberOfInterleavedSamplesActuallyRead = drflac_read_pcm_frames_s32(pFlac, pFlac->totalPCMFrameCount, pSamples); + +The drflac object represents the decoder. It is a transparent type so all the information you need, such as the number of +channels and the bits per sample, should be directly accessible - just make sure you don't change their values. Samples are +always output as interleaved signed 32-bit PCM. In the example above a native FLAC stream was opened, however dr_flac has +seamless support for Ogg encapsulated FLAC streams as well. + +You do not need to decode the entire stream in one go - you just specify how many samples you'd like at any given time and +the decoder will give you as many samples as it can, up to the amount requested. Later on when you need the next batch of +samples, just call it again. Example: + + while (drflac_read_pcm_frames_s32(pFlac, chunkSizeInPCMFrames, pChunkSamples) > 0) { + do_something(); + } + +You can seek to a specific sample with drflac_seek_to_sample(). The given sample is based on interleaving. So for example, +if you were to seek to the sample at index 0 in a stereo stream, you'll be seeking to the first sample of the left channel. +The sample at index 1 will be the first sample of the right channel. The sample at index 2 will be the second sample of the +left channel, etc. + + +If you just want to quickly decode an entire FLAC file in one go you can do something like this: + + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int32* pSampleData = drflac_open_file_and_read_pcm_frames_s32("MySong.flac", &channels, &sampleRate, &totalPCMFrameCount); + if (pSampleData == NULL) { + // Failed to open and decode FLAC file. + } + + ... + + drflac_free(pSampleData); + + +You can read samples as signed 16-bit integer and 32-bit floating-point PCM with the *_s16() and *_f32() family of APIs +respectively, but note that these should be considered lossy. + + +If you need access to metadata (album art, etc.), use drflac_open_with_metadata(), drflac_open_file_with_metdata() or +drflac_open_memory_with_metadata(). The rationale for keeping these APIs separate is that they're slightly slower than the +normal versions and also just a little bit harder to use. + +dr_flac reports metadata to the application through the use of a callback, and every metadata block is reported before +drflac_open_with_metdata() returns. + + +The main opening APIs (drflac_open(), etc.) will fail if the header is not present. The presents a problem in certain +scenarios such as broadcast style streams like internet radio where the header may not be present because the user has +started playback mid-stream. To handle this, use the relaxed APIs: drflac_open_relaxed() and drflac_open_with_metadata_relaxed(). + +It is not recommended to use these APIs for file based streams because a missing header would usually indicate a +corrupted or perverse file. In addition, these APIs can take a long time to initialize because they may need to spend +a lot of time finding the first frame. + + + +OPTIONS +======= +#define these options before including this file. + +#define DR_FLAC_NO_STDIO + Disable drflac_open_file() and family. + +#define DR_FLAC_NO_OGG + Disables support for Ogg/FLAC streams. + +#define DR_FLAC_BUFFER_SIZE <number> + Defines the size of the internal buffer to store data from onRead(). This buffer is used to reduce the number of calls + back to the client for more data. Larger values means more memory, but better performance. My tests show diminishing + returns after about 4KB (which is the default). Consider reducing this if you have a very efficient implementation of + onRead(), or increase it if it's very inefficient. Must be a multiple of 8. + +#define DR_FLAC_NO_CRC + Disables CRC checks. This will offer a performance boost when CRC is unnecessary. + +#define DR_FLAC_NO_SIMD + Disables SIMD optimizations (SSE on x86/x64 architectures). Use this if you are having compatibility issues with your + compiler. + + + +QUICK NOTES +=========== +- dr_flac does not currently support changing the sample rate nor channel count mid stream. +- Audio data is output as signed 32-bit PCM, regardless of the bits per sample the FLAC stream is encoded as. +- This has not been tested on big-endian architectures. +- dr_flac is not thread-safe, but its APIs can be called from any thread so long as you do your own synchronization. +- When using Ogg encapsulation, a corrupted metadata block will result in drflac_open_with_metadata() and drflac_open() + returning inconsistent samples. +*/ + +#ifndef dr_flac_h +#define dr_flac_h + +#include <stddef.h> + +#if defined(_MSC_VER) && _MSC_VER < 1600 +typedef signed char drflac_int8; +typedef unsigned char drflac_uint8; +typedef signed short drflac_int16; +typedef unsigned short drflac_uint16; +typedef signed int drflac_int32; +typedef unsigned int drflac_uint32; +typedef signed __int64 drflac_int64; +typedef unsigned __int64 drflac_uint64; +#else +#include <stdint.h> +typedef int8_t drflac_int8; +typedef uint8_t drflac_uint8; +typedef int16_t drflac_int16; +typedef uint16_t drflac_uint16; +typedef int32_t drflac_int32; +typedef uint32_t drflac_uint32; +typedef int64_t drflac_int64; +typedef uint64_t drflac_uint64; +#endif +typedef drflac_uint8 drflac_bool8; +typedef drflac_uint32 drflac_bool32; +#define DRFLAC_TRUE 1 +#define DRFLAC_FALSE 0 + +#if defined(_MSC_VER) && _MSC_VER >= 1700 /* Visual Studio 2012 */ + #define DRFLAC_DEPRECATED __declspec(deprecated) +#elif (defined(__GNUC__) && __GNUC__ >= 4) /* GCC 4 */ + #define DRFLAC_DEPRECATED __attribute__((deprecated)) +#elif defined(__has_feature) /* Clang */ + #if __has_feature(attribute_deprecated) + #define DRFLAC_DEPRECATED __attribute__((deprecated)) + #else + #define DRFLAC_DEPRECATED + #endif +#else + #define DRFLAC_DEPRECATED +#endif + +/* +As data is read from the client it is placed into an internal buffer for fast access. This controls the +size of that buffer. Larger values means more speed, but also more memory. In my testing there is diminishing +returns after about 4KB, but you can fiddle with this to suit your own needs. Must be a multiple of 8. +*/ +#ifndef DR_FLAC_BUFFER_SIZE +#define DR_FLAC_BUFFER_SIZE 4096 +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/* Check if we can enable 64-bit optimizations. */ +#if defined(_WIN64) || defined(_LP64) || defined(__LP64__) +#define DRFLAC_64BIT +#endif + +#ifdef DRFLAC_64BIT +typedef drflac_uint64 drflac_cache_t; +#else +typedef drflac_uint32 drflac_cache_t; +#endif + +/* The various metadata block types. */ +#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 +#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 +#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 +#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 +#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 +#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 +#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 +#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 + +/* The various picture types specified in the PICTURE block. */ +#define DRFLAC_PICTURE_TYPE_OTHER 0 +#define DRFLAC_PICTURE_TYPE_FILE_ICON 1 +#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 +#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 +#define DRFLAC_PICTURE_TYPE_COVER_BACK 4 +#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 +#define DRFLAC_PICTURE_TYPE_MEDIA 6 +#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 +#define DRFLAC_PICTURE_TYPE_ARTIST 8 +#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 +#define DRFLAC_PICTURE_TYPE_BAND 10 +#define DRFLAC_PICTURE_TYPE_COMPOSER 11 +#define DRFLAC_PICTURE_TYPE_LYRICIST 12 +#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 +#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 +#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 +#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 +#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 +#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 +#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 +#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 + +typedef enum +{ + drflac_container_native, + drflac_container_ogg, + drflac_container_unknown +} drflac_container; + +typedef enum +{ + drflac_seek_origin_start, + drflac_seek_origin_current +} drflac_seek_origin; + +/* Packing is important on this structure because we map this directly to the raw data within the SEEKTABLE metadata block. */ +#pragma pack(2) +typedef struct +{ + drflac_uint64 firstSample; + drflac_uint64 frameOffset; /* The offset from the first byte of the header of the first frame. */ + drflac_uint16 sampleCount; +} drflac_seekpoint; +#pragma pack() + +typedef struct +{ + drflac_uint16 minBlockSize; + drflac_uint16 maxBlockSize; + drflac_uint32 minFrameSize; + drflac_uint32 maxFrameSize; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalSampleCount; + drflac_uint8 md5[16]; +} drflac_streaminfo; + +typedef struct +{ + /* The metadata type. Use this to know how to interpret the data below. */ + drflac_uint32 type; + + /* + A pointer to the raw data. This points to a temporary buffer so don't hold on to it. It's best to + not modify the contents of this buffer. Use the structures below for more meaningful and structured + information about the metadata. It's possible for this to be null. + */ + const void* pRawData; + + /* The size in bytes of the block and the buffer pointed to by pRawData if it's non-NULL. */ + drflac_uint32 rawDataSize; + + union + { + drflac_streaminfo streaminfo; + + struct + { + int unused; + } padding; + + struct + { + drflac_uint32 id; + const void* pData; + drflac_uint32 dataSize; + } application; + + struct + { + drflac_uint32 seekpointCount; + const drflac_seekpoint* pSeekpoints; + } seektable; + + struct + { + drflac_uint32 vendorLength; + const char* vendor; + drflac_uint32 commentCount; + const void* pComments; + } vorbis_comment; + + struct + { + char catalog[128]; + drflac_uint64 leadInSampleCount; + drflac_bool32 isCD; + drflac_uint8 trackCount; + const void* pTrackData; + } cuesheet; + + struct + { + drflac_uint32 type; + drflac_uint32 mimeLength; + const char* mime; + drflac_uint32 descriptionLength; + const char* description; + drflac_uint32 width; + drflac_uint32 height; + drflac_uint32 colorDepth; + drflac_uint32 indexColorCount; + drflac_uint32 pictureDataSize; + const drflac_uint8* pPictureData; + } picture; + } data; +} drflac_metadata; + + +/* +Callback for when data needs to be read from the client. + +pUserData [in] The user data that was passed to drflac_open() and family. +pBufferOut [out] The output buffer. +bytesToRead [in] The number of bytes to read. + +Returns the number of bytes actually read. + +A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until +either the entire bytesToRead is filled or you have reached the end of the stream. +*/ +typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +/* +Callback for when data needs to be seeked. + +pUserData [in] The user data that was passed to drflac_open() and family. +offset [in] The number of bytes to move, relative to the origin. Will never be negative. +origin [in] The origin of the seek - the current position or the start of the stream. + +Returns whether or not the seek was successful. + +The offset will never be negative. Whether or not it is relative to the beginning or current position is determined +by the "origin" parameter which will be either drflac_seek_origin_start or drflac_seek_origin_current. +*/ +typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); + +/* +Callback for when a metadata block is read. + +pUserData [in] The user data that was passed to drflac_open() and family. +pMetadata [in] A pointer to a structure containing the data of the metadata block. + +Use pMetadata->type to determine which metadata block is being handled and how to read the data. +*/ +typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); + + +/* Structure for internal use. Only used for decoders opened with drflac_open_memory. */ +typedef struct +{ + const drflac_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drflac__memory_stream; + +/* Structure for internal use. Used for bit streaming. */ +typedef struct +{ + /* The function to call when more data needs to be read. */ + drflac_read_proc onRead; + + /* The function to call when the current read position needs to be moved. */ + drflac_seek_proc onSeek; + + /* The user data to pass around to onRead and onSeek. */ + void* pUserData; + + + /* + The number of unaligned bytes in the L2 cache. This will always be 0 until the end of the stream is hit. At the end of the + stream there will be a number of bytes that don't cleanly fit in an L1 cache line, so we use this variable to know whether + or not the bistreamer needs to run on a slower path to read those last bytes. This will never be more than sizeof(drflac_cache_t). + */ + size_t unalignedByteCount; + + /* The content of the unaligned bytes. */ + drflac_cache_t unalignedCache; + + /* The index of the next valid cache line in the "L2" cache. */ + drflac_uint32 nextL2Line; + + /* The number of bits that have been consumed by the cache. This is used to determine how many valid bits are remaining. */ + drflac_uint32 consumedBits; + + /* + The cached data which was most recently read from the client. There are two levels of cache. Data flows as such: + Client -> L2 -> L1. The L2 -> L1 movement is aligned and runs on a fast path in just a few instructions. + */ + drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; + drflac_cache_t cache; + + /* + CRC-16. This is updated whenever bits are read from the bit stream. Manually set this to 0 to reset the CRC. For FLAC, this + is reset to 0 at the beginning of each frame. + */ + drflac_uint16 crc16; + drflac_cache_t crc16Cache; /* A cache for optimizing CRC calculations. This is filled when when the L1 cache is reloaded. */ + drflac_uint32 crc16CacheIgnoredBytes; /* The number of bytes to ignore when updating the CRC-16 from the CRC-16 cache. */ +} drflac_bs; + +typedef struct +{ + /* The type of the subframe: SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED or SUBFRAME_LPC. */ + drflac_uint8 subframeType; + + /* The number of wasted bits per sample as specified by the sub-frame header. */ + drflac_uint8 wastedBitsPerSample; + + /* The order to use for the prediction stage for SUBFRAME_FIXED and SUBFRAME_LPC. */ + drflac_uint8 lpcOrder; + + /* + The number of bits per sample for this subframe. This is not always equal to the current frame's bit per sample because + an extra bit is required for side channels when interchannel decorrelation is being used. + */ + drflac_uint32 bitsPerSample; + + /* + A pointer to the buffer containing the decoded samples in the subframe. This pointer is an offset from drflac::pExtraData. Note that + it's a signed 32-bit integer for each value. + */ + drflac_int32* pDecodedSamples; +} drflac_subframe; + +typedef struct +{ + /* + If the stream uses variable block sizes, this will be set to the index of the first sample. If fixed block sizes are used, this will + always be set to 0. + */ + drflac_uint64 sampleNumber; + + /* If the stream uses fixed block sizes, this will be set to the frame number. If variable block sizes are used, this will always be 0. */ + drflac_uint32 frameNumber; + + /* The sample rate of this frame. */ + drflac_uint32 sampleRate; + + /* The number of samples in each sub-frame within this frame. */ + drflac_uint16 blockSize; + + /* + The channel assignment of this frame. This is not always set to the channel count. If interchannel decorrelation is being used this + will be set to DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE, DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE or DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE. + */ + drflac_uint8 channelAssignment; + + /* The number of bits per sample within this frame. */ + drflac_uint8 bitsPerSample; + + /* The frame's CRC. */ + drflac_uint8 crc8; +} drflac_frame_header; + +typedef struct +{ + /* The header. */ + drflac_frame_header header; + + /* + The number of samples left to be read in this frame. This is initially set to the block size multiplied by the channel count. As samples + are read, this will be decremented. When it reaches 0, the decoder will see this frame as fully consumed and load the next frame. + */ + drflac_uint32 samplesRemaining; + + /* The list of sub-frames within the frame. There is one sub-frame for each channel, and there's a maximum of 8 channels. */ + drflac_subframe subframes[8]; +} drflac_frame; + +typedef struct +{ + /* The function to call when a metadata block is read. */ + drflac_meta_proc onMeta; + + /* The user data posted to the metadata callback function. */ + void* pUserDataMD; + + + /* The sample rate. Will be set to something like 44100. */ + drflac_uint32 sampleRate; + + /* + The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. Maximum 8. This is set based on the + value specified in the STREAMINFO block. + */ + drflac_uint8 channels; + + /* The bits per sample. Will be set to something like 16, 24, etc. */ + drflac_uint8 bitsPerSample; + + /* The maximum block size, in samples. This number represents the number of samples in each channel (not combined). */ + drflac_uint16 maxBlockSize; + + /* + The total number of samples making up the stream. This includes every channel. For example, if the stream has 2 channels, + with each channel having a total of 4096, this value will be set to 2*4096 = 8192. Can be 0 in which case it's still a + valid stream, but just means the total sample count is unknown. Likely the case with streams like internet radio. + */ + drflac_uint64 totalSampleCount; + drflac_uint64 totalPCMFrameCount; /* <-- Equal to totalSampleCount / channels. */ + + + /* The container type. This is set based on whether or not the decoder was opened from a native or Ogg stream. */ + drflac_container container; + + /* The number of seekpoints in the seektable. */ + drflac_uint32 seekpointCount; + + + /* Information about the frame the decoder is currently sitting on. */ + drflac_frame currentFrame; + + /* The index of the sample the decoder is currently sitting on. This is only used for seeking. */ + drflac_uint64 currentSample; + + /* The position of the first frame in the stream. This is only ever used for seeking. */ + drflac_uint64 firstFramePos; + + + /* A hack to avoid a malloc() when opening a decoder with drflac_open_memory(). */ + drflac__memory_stream memoryStream; + + + /* A pointer to the decoded sample data. This is an offset of pExtraData. */ + drflac_int32* pDecodedSamples; + + /* A pointer to the seek table. This is an offset of pExtraData, or NULL if there is no seek table. */ + drflac_seekpoint* pSeekpoints; + + /* Internal use only. Only used with Ogg containers. Points to a drflac_oggbs object. This is an offset of pExtraData. */ + void* _oggbs; + + /* The bit streamer. The raw FLAC data is fed through this object. */ + drflac_bs bs; + + /* Variable length extra data. We attach this to the end of the object so we can avoid unnecessary mallocs. */ + drflac_uint8 pExtraData[1]; +} drflac; + + +/* +Opens a FLAC decoder. + +onRead [in] The function to call when data needs to be read from the client. +onSeek [in] The function to call when the read position of the client data needs to move. +pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek. + +Returns a pointer to an object representing the decoder. + +Close the decoder with drflac_close(). + +This function will automatically detect whether or not you are attempting to open a native or Ogg encapsulated +FLAC, both of which should work seamlessly without any manual intervention. Ogg encapsulation also works with +multiplexed streams which basically means it can play FLAC encoded audio tracks in videos. + +This is the lowest level function for opening a FLAC stream. You can also use drflac_open_file() and drflac_open_memory() +to open the stream from a file or from a block of memory respectively. + +The STREAMINFO block must be present for this to succeed. Use drflac_open_relaxed() to open a FLAC stream where +the header may not be present. + +See also: drflac_open_file(), drflac_open_memory(), drflac_open_with_metadata(), drflac_close() +*/ +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData); + +/* +The same as drflac_open(), except attempts to open the stream even when a header block is not present. + +Because the header is not necessarily available, the caller must explicitly define the container (Native or Ogg). Do +not set this to drflac_container_unknown - that is for internal use only. + +Opening in relaxed mode will continue reading data from onRead until it finds a valid frame. If a frame is never +found it will continue forever. To abort, force your onRead callback to return 0, which dr_flac will use as an +indicator that the end of the stream was found. +*/ +drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData); + +/* +Opens a FLAC decoder and notifies the caller of the metadata chunks (album art, etc.). + +onRead [in] The function to call when data needs to be read from the client. +onSeek [in] The function to call when the read position of the client data needs to move. +onMeta [in] The function to call for every metadata block. +pUserData [in, optional] A pointer to application defined data that will be passed to onRead, onSeek and onMeta. + +Returns a pointer to an object representing the decoder. + +Close the decoder with drflac_close(). + +This is slower than drflac_open(), so avoid this one if you don't need metadata. Internally, this will do a DRFLAC_MALLOC() +and DRFLAC_FREE() for every metadata block except for STREAMINFO and PADDING blocks. + +The caller is notified of the metadata via the onMeta callback. All metadata blocks will be handled before the function +returns. + +The STREAMINFO block must be present for this to succeed. Use drflac_open_with_metadata_relaxed() to open a FLAC +stream where the header may not be present. + +Note that this will behave inconsistently with drflac_open() if the stream is an Ogg encapsulated stream and a metadata +block is corrupted. This is due to the way the Ogg stream recovers from corrupted pages. When drflac_open_with_metadata() +is being used, the open routine will try to read the contents of the metadata block, whereas drflac_open() will simply +seek past it (for the sake of efficiency). This inconsistency can result in different samples being returned depending on +whether or not the stream is being opened with metadata. + +See also: drflac_open_file_with_metadata(), drflac_open_memory_with_metadata(), drflac_open(), drflac_close() +*/ +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData); + +/* +The same as drflac_open_with_metadata(), except attempts to open the stream even when a header block is not present. + +See also: drflac_open_with_metadata(), drflac_open_relaxed() +*/ +drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData); + +/* +Closes the given FLAC decoder. + +pFlac [in] The decoder to close. + +This will destroy the decoder object. +*/ +void drflac_close(drflac* pFlac); + + +/* +Reads sample data from the given FLAC decoder, output as interleaved signed 32-bit PCM. + +pFlac [in] The decoder. +framesToRead [in] The number of PCM frames to read. +pBufferOut [out, optional] A pointer to the buffer that will receive the decoded samples. + +Returns the number of PCM frames actually read. + +pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames +seeked. +*/ +drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut); + +/* +Same as drflac_read_pcm_frames_s32(), except outputs samples as 16-bit integer PCM rather than 32-bit. + +Note that this is lossy for streams where the bits per sample is larger than 16. +*/ +drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut); + +/* +Same as drflac_read_pcm_frames_s32(), except outputs samples as 32-bit floating-point PCM. + +Note that this should be considered lossy due to the nature of floating point numbers not being able to exactly +represent every possible number. +*/ +drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut); + +/* +Seeks to the PCM frame at the given index. + +pFlac [in] The decoder. +pcmFrameIndex [in] The index of the PCM frame to seek to. See notes below. + +Returns DRFLAC_TRUE if successful; DRFLAC_FALSE otherwise. +*/ +drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex); + + + +#ifndef DR_FLAC_NO_STDIO +/* +Opens a FLAC decoder from the file at the given path. + +filename [in] The path of the file to open, either absolute or relative to the current directory. + +Returns a pointer to an object representing the decoder. + +Close the decoder with drflac_close(). + +This will hold a handle to the file until the decoder is closed with drflac_close(). Some platforms will restrict the +number of files a process can have open at any given time, so keep this mind if you have many decoders open at the +same time. + +See also: drflac_open(), drflac_open_file_with_metadata(), drflac_close() +*/ +drflac* drflac_open_file(const char* filename); + +/* +Opens a FLAC decoder from the file at the given path and notifies the caller of the metadata chunks (album art, etc.) + +Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +*/ +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData); +#endif + +/* +Opens a FLAC decoder from a pre-allocated block of memory + +This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for +the lifetime of the decoder. +*/ +drflac* drflac_open_memory(const void* data, size_t dataSize); + +/* +Opens a FLAC decoder from a pre-allocated block of memory and notifies the caller of the metadata chunks (album art, etc.) + +Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. +*/ +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData); + + + +/* High Level APIs */ + +/* +Opens a FLAC stream from the given callbacks and fully decodes it in a single operation. The return value is a +pointer to the sample data as interleaved signed 32-bit PCM. The returned data must be freed with DRFLAC_FREE(). + +Sometimes a FLAC file won't keep track of the total sample count. In this situation the function will continuously +read samples into a dynamically sized buffer on the heap until no samples are left. + +Do not call this function on a broadcast type of stream (like internet radio streams and whatnot). +*/ +drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Same as drflac_open_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */ +drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Same as drflac_open_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */ +float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +#ifndef DR_FLAC_NO_STDIO +/* Same as drflac_open_and_read_pcm_frames_s32() except opens the decoder from a file. */ +drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Same as drflac_open_file_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */ +drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Same as drflac_open_file_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */ +float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); +#endif + +/* Same as drflac_open_and_read_pcm_frames_s32() except opens the decoder from a block of memory. */ +drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Same as drflac_open_memory_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */ +drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Same as drflac_open_memory_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */ +float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount); + +/* Frees memory that was allocated internally by dr_flac. */ +void drflac_free(void* p); + + +/* Structure representing an iterator for vorbis comments in a VORBIS_COMMENT metadata block. */ +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_vorbis_comment_iterator; + +/* +Initializes a vorbis comment iterator. This can be used for iterating over the vorbis comments in a VORBIS_COMMENT +metadata block. +*/ +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments); + +/* +Goes to the next vorbis comment in the given iterator. If null is returned it means there are no more comments. The +returned string is NOT null terminated. +*/ +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut); + + +/* Structure representing an iterator for cuesheet tracks in a CUESHEET metadata block. */ +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_cuesheet_track_iterator; + +/* Packing is important on this structure because we map this directly to the raw data within the CUESHEET metadata block. */ +#pragma pack(4) +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 index; + drflac_uint8 reserved[3]; +} drflac_cuesheet_track_index; +#pragma pack() + +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 trackNumber; + char ISRC[12]; + drflac_bool8 isAudio; + drflac_bool8 preEmphasis; + drflac_uint8 indexCount; + const drflac_cuesheet_track_index* pIndexPoints; +} drflac_cuesheet_track; + +/* +Initializes a cuesheet track iterator. This can be used for iterating over the cuesheet tracks in a CUESHEET metadata +block. +*/ +void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData); + +/* Goes to the next cuesheet track in the given iterator. If DRFLAC_FALSE is returned it means there are no more comments. */ +drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack); + + +/* Deprecated APIs */ +DRFLAC_DEPRECATED drflac_uint64 drflac_read_s32(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* pBufferOut); /* Use drflac_read_pcm_frames_s32() instead. */ +DRFLAC_DEPRECATED drflac_uint64 drflac_read_s16(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int16* pBufferOut); /* Use drflac_read_pcm_frames_s16() instead. */ +DRFLAC_DEPRECATED drflac_uint64 drflac_read_f32(drflac* pFlac, drflac_uint64 samplesToRead, float* pBufferOut); /* Use drflac_read_pcm_frames_f32() instead. */ +DRFLAC_DEPRECATED drflac_bool32 drflac_seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex); /* Use drflac_seek_to_pcm_frame() instead. */ +DRFLAC_DEPRECATED drflac_int32* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_and_read_pcm_frames_s32(). */ +DRFLAC_DEPRECATED drflac_int16* drflac_open_and_decode_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_and_read_pcm_frames_s16(). */ +DRFLAC_DEPRECATED float* drflac_open_and_decode_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_and_read_pcm_frames_f32(). */ +DRFLAC_DEPRECATED drflac_int32* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_file_and_read_pcm_frames_s32(). */ +DRFLAC_DEPRECATED drflac_int16* drflac_open_and_decode_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_file_and_read_pcm_frames_s16(). */ +DRFLAC_DEPRECATED float* drflac_open_and_decode_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_file_and_read_pcm_frames_f32(). */ +DRFLAC_DEPRECATED drflac_int32* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_memory_and_read_pcm_frames_s32(). */ +DRFLAC_DEPRECATED drflac_int16* drflac_open_and_decode_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_memory_and_read_pcm_frames_s16(). */ +DRFLAC_DEPRECATED float* drflac_open_and_decode_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalSampleCount); /* Use drflac_open_memory_and_read_pcm_frames_f32(). */ + +#ifdef __cplusplus +} +#endif +#endif /* dr_flac_h */ + + +/************************************************************************************************************************************************************ + ************************************************************************************************************************************************************ + + IMPLEMENTATION + + ************************************************************************************************************************************************************ + ************************************************************************************************************************************************************/ +#ifdef DR_FLAC_IMPLEMENTATION + +/* Disable some annoying warnings. */ +#if defined(__GNUC__) + #pragma GCC diagnostic push + #if __GNUC__ >= 7 + #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" + #endif +#endif + +#ifdef __linux__ + #ifndef _BSD_SOURCE + #define _BSD_SOURCE + #endif + #ifndef __USE_BSD + #define __USE_BSD + #endif + #include <endian.h> +#endif + +#include <stdlib.h> +#include <string.h> + +#ifdef _MSC_VER +#define DRFLAC_INLINE __forceinline +#else +#ifdef __GNUC__ +#define DRFLAC_INLINE __inline__ __attribute__((always_inline)) +#else +#define DRFLAC_INLINE +#endif +#endif + +/* CPU architecture. */ +#if defined(__x86_64__) || defined(_M_X64) + #define DRFLAC_X64 +#elif defined(__i386) || defined(_M_IX86) + #define DRFLAC_X86 +#elif defined(__arm__) || defined(_M_ARM) + #define DRFLAC_ARM +#endif + +/* Intrinsics Support */ +#if !defined(DR_FLAC_NO_SIMD) + #if defined(DRFLAC_X64) || defined(DRFLAC_X86) + #if defined(_MSC_VER) && !defined(__clang__) + /* MSVC. */ + #if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2) /* 2005 */ + #define DRFLAC_SUPPORT_SSE2 + #endif + #if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41) /* 2010 */ + #define DRFLAC_SUPPORT_SSE41 + #endif + #else + /* Assume GNUC-style. */ + #if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2) + #define DRFLAC_SUPPORT_SSE2 + #endif + #if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41) + #define DRFLAC_SUPPORT_SSE41 + #endif + #endif + + /* If at this point we still haven't determined compiler support for the intrinsics just fall back to __has_include. */ + #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) + #if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include(<emmintrin.h>) + #define DRFLAC_SUPPORT_SSE2 + #endif + #if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include(<smmintrin.h>) + #define DRFLAC_SUPPORT_SSE41 + #endif + #endif + + #if defined(DRFLAC_SUPPORT_SSE41) + #include <smmintrin.h> + #elif defined(DRFLAC_SUPPORT_SSE2) + #include <emmintrin.h> + #endif + #endif + + #if defined(DRFLAC_ARM) + #if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) + #define DRFLAC_SUPPORT_NEON + #endif + + /* Fall back to looking for the #include file. */ + #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) + #if !defined(DRFLAC_SUPPORT_NEON) && !defined(DRFLAC_NO_NEON) && __has_include(<arm_neon.h>) + #define DRFLAC_SUPPORT_NEON + #endif + #endif + + #if defined(DRFLAC_SUPPORT_NEON) + #include <arm_neon.h> + #endif + #endif +#endif + +/* Compile-time CPU feature support. */ +#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #if defined(_MSC_VER) && !defined(__clang__) + #if _MSC_VER >= 1400 + #include <intrin.h> + static void drflac__cpuid(int info[4], int fid) + { + __cpuid(info, fid); + } + #else + #define DRFLAC_NO_CPUID + #endif + #else + #if defined(__GNUC__) || defined(__clang__) + static void drflac__cpuid(int info[4], int fid) + { + /* + It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the + specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for + supporting different assembly dialects. + + What's basically happening is that we're saving and restoring the ebx register manually. + */ + #if defined(DRFLAC_X86) && defined(__PIC__) + __asm__ __volatile__ ( + "xchg{l} {%%}ebx, %k1;" + "cpuid;" + "xchg{l} {%%}ebx, %k1;" + : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #else + __asm__ __volatile__ ( + "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #endif + } + #else + #define DRFLAC_NO_CPUID + #endif + #endif +#else + #define DRFLAC_NO_CPUID +#endif + +static DRFLAC_INLINE drflac_bool32 drflac_has_sse2() +{ +#if defined(DRFLAC_SUPPORT_SSE2) + #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2) + #if defined(DRFLAC_X64) + return DRFLAC_TRUE; /* 64-bit targets always support SSE2. */ + #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__) + return DRFLAC_TRUE; /* If the compiler is allowed to freely generate SSE2 code we can assume support. */ + #else + #if defined(DRFLAC_NO_CPUID) + return DRFLAC_FALSE; + #else + int info[4]; + drflac__cpuid(info, 1); + return (info[3] & (1 << 26)) != 0; + #endif + #endif + #else + return DRFLAC_FALSE; /* SSE2 is only supported on x86 and x64 architectures. */ + #endif +#else + return DRFLAC_FALSE; /* No compiler support. */ +#endif +} + +static DRFLAC_INLINE drflac_bool32 drflac_has_sse41() +{ +#if defined(DRFLAC_SUPPORT_SSE41) + #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41) + #if defined(DRFLAC_X64) + return DRFLAC_TRUE; /* 64-bit targets always support SSE4.1. */ + #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE4_1__) + return DRFLAC_TRUE; /* If the compiler is allowed to freely generate SSE41 code we can assume support. */ + #else + #if defined(DRFLAC_NO_CPUID) + return DRFLAC_FALSE; + #else + int info[4]; + drflac__cpuid(info, 1); + return (info[2] & (1 << 19)) != 0; + #endif + #endif + #else + return DRFLAC_FALSE; /* SSE41 is only supported on x86 and x64 architectures. */ + #endif +#else + return DRFLAC_FALSE; /* No compiler support. */ +#endif +} + + +#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif defined(__clang__) + #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl) + #define DRFLAC_HAS_LZCNT_INTRINSIC + #endif +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1300 + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if __has_builtin(__builtin_bswap16) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif +#endif + + +/* Standard library stuff. */ +#ifndef DRFLAC_ASSERT +#include <assert.h> +#define DRFLAC_ASSERT(expression) assert(expression) +#endif +#ifndef DRFLAC_MALLOC +#define DRFLAC_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRFLAC_REALLOC +#define DRFLAC_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRFLAC_FREE +#define DRFLAC_FREE(p) free((p)) +#endif +#ifndef DRFLAC_COPY_MEMORY +#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRFLAC_ZERO_MEMORY +#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif + +#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 /* 64 for AVX-512 in the future. */ + +typedef drflac_int32 drflac_result; +#define DRFLAC_SUCCESS 0 +#define DRFLAC_ERROR -1 /* A generic error. */ +#define DRFLAC_INVALID_ARGS -2 +#define DRFLAC_END_OF_STREAM -128 +#define DRFLAC_CRC_MISMATCH -129 + +#define DRFLAC_SUBFRAME_CONSTANT 0 +#define DRFLAC_SUBFRAME_VERBATIM 1 +#define DRFLAC_SUBFRAME_FIXED 8 +#define DRFLAC_SUBFRAME_LPC 32 +#define DRFLAC_SUBFRAME_RESERVED 255 + +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 + +#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 +#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 +#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 +#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 + +/* +Keeps track of the number of leading samples for each sub-frame. This is required because the SSE pipeline will occasionally +reference excess prior samples. +*/ +#define DRFLAC_LEADING_SAMPLES 32 + + +#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) +#define drflac_assert DRFLAC_ASSERT +#define drflac_copy_memory DRFLAC_COPY_MEMORY +#define drflac_zero_memory DRFLAC_ZERO_MEMORY + + +/* CPU caps. */ +static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE; +#ifndef DRFLAC_NO_CPUID +/* +I've had a bug report that Clang's ThreadSanitizer presents a warning in this function. Having reviewed this, this does +actually make sense. However, since CPU caps should never differ for a running process, I don't think the trade off of +complicating internal API's by passing around CPU caps versus just disabling the warnings is worthwhile. I'm therefore +just going to disable these warnings. +*/ +#if defined(__has_feature) + #if __has_feature(thread_sanitizer) + #define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread"))) + #else + #define DRFLAC_NO_THREAD_SANITIZE + #endif +#else + #define DRFLAC_NO_THREAD_SANITIZE +#endif +static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE; +static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE; +DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps() +{ + static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE; + + if (!isCPUCapsInitialized) { + int info[4] = {0}; + + /* LZCNT */ + drflac__cpuid(info, 0x80000001); + drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0; + + /* SSE2 */ + drflac__gIsSSE2Supported = drflac_has_sse2(); + + /* SSE4.1 */ + drflac__gIsSSE41Supported = drflac_has_sse41(); + + /* Initialized. */ + isCPUCapsInitialized = DRFLAC_TRUE; + } +} +#endif + + +/* Endian Management */ +static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian() +{ +#if defined(DRFLAC_X86) || defined(DRFLAC_X64) + return DRFLAC_TRUE; +#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN + return DRFLAC_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap32(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + +static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC + #if defined(_MSC_VER) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & (drflac_uint64)0xFF00000000000000) >> 56) | + ((n & (drflac_uint64)0x00FF000000000000) >> 40) | + ((n & (drflac_uint64)0x0000FF0000000000) >> 24) | + ((n & (drflac_uint64)0x000000FF00000000) >> 8) | + ((n & (drflac_uint64)0x00000000FF000000) << 8) | + ((n & (drflac_uint64)0x0000000000FF0000) << 24) | + ((n & (drflac_uint64)0x000000000000FF00) << 40) | + ((n & (drflac_uint64)0x00000000000000FF) << 56); +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint16(n); + } + + return n; +} + +static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +} + +static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint64(n); + } + + return n; +} + + +static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n) +{ + if (!drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +} + + +static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n) +{ + drflac_uint32 result = 0; + result |= (n & 0x7F000000) >> 3; + result |= (n & 0x007F0000) >> 2; + result |= (n & 0x00007F00) >> 1; + result |= (n & 0x0000007F) >> 0; + + return result; +} + + + +/* The CRC code below is based on this document: http://zlib.net/crc_v3.txt */ +static drflac_uint8 drflac__crc8_table[] = { + 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, + 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, + 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, + 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, + 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, + 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, + 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, + 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, + 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, + 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, + 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, + 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, + 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, + 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, + 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, + 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 +}; + +static drflac_uint16 drflac__crc16_table[] = { + 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011, + 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022, + 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072, + 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041, + 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2, + 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, + 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, + 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082, + 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192, + 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1, + 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1, + 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2, + 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151, + 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, + 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132, + 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101, + 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312, + 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321, + 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371, + 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342, + 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, + 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2, + 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2, + 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381, + 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291, + 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2, + 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, + 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, + 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252, + 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261, + 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231, + 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202 +}; + +static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data) +{ + return drflac__crc8_table[crc ^ data]; +} + +static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + /* REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc8(crc, 0, 8);") */ + drflac_uint8 p = 0x07; + for (int i = count-1; i >= 0; --i) { + drflac_uint8 bit = (data & (1 << i)) >> i; + if (crc & 0x80) { + crc = ((crc << 1) | bit) ^ p; + } else { + crc = ((crc << 1) | bit); + } + } + return crc; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + + drflac_assert(count <= 32); + + wholeBytes = count >> 3; + leftoverBits = count - (wholeBytes*8); + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data) +{ + return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data]; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount) +{ + switch (byteCount) + { +#ifdef DRFLAC_64BIT + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + } + + return crc; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + /* REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc16(crc, 0, 16);") */ + drflac_uint16 p = 0x8005; + for (int i = count-1; i >= 0; --i) { + drflac_uint16 bit = (data & (1ULL << i)) >> i; + if (r & 0x8000) { + r = ((r << 1) | bit) ^ p; + } else { + r = ((r << 1) | bit); + } + } + + return crc; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + + drflac_assert(count <= 64); + + wholeBytes = count >> 3; + leftoverBits = count - (wholeBytes*8); + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + + drflac_assert(count <= 64); + + wholeBytes = count >> 3; + leftoverBits = count - (wholeBytes*8); + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits))); /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */ + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits))); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits))); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits))); + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count) +{ +#ifdef DRFLAC_64BIT + return drflac_crc16__64bit(crc, data, count); +#else + return drflac_crc16__32bit(crc, data, count); +#endif +} + + +#ifdef DRFLAC_64BIT +#define drflac__be2host__cache_line drflac__be2host_64 +#else +#define drflac__be2host__cache_line drflac__be2host_32 +#endif + +/* +BIT READING ATTEMPT #2 + +This uses a 32- or 64-bit bit-shifted cache - as bits are read, the cache is shifted such that the first valid bit is sitting +on the most significant bit. It uses the notion of an L1 and L2 cache (borrowed from CPU architecture), where the L1 cache +is a 32- or 64-bit unsigned integer (depending on whether or not a 32- or 64-bit build is being compiled) and the L2 is an +array of "cache lines", with each cache line being the same size as the L1. The L2 is a buffer of about 4KB and is where data +from onRead() is read into. +*/ +#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) +#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) +#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits) +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount))) +#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) +#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount))) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1))) +#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) +#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) +#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) + + +#ifndef DR_FLAC_NO_CRC +static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs) +{ + bs->crc16 = 0; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +} + +static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs) +{ + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes); + bs->crc16CacheIgnoredBytes = 0; +} + +static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs) +{ + /* We should never be flushing in a situation where we are not aligned on a byte boundary. */ + drflac_assert((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0); + + /* + The bits that were read from the L1 cache need to be accumulated. The number of bytes needing to be accumulated is determined + by the number of bits that have been consumed. + */ + if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) { + drflac__update_crc16(bs); + } else { + /* We only accumulate the consumed bits. */ + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes); + + /* + The bits that we just accumulated should never be accumulated again. We need to keep track of how many bytes were accumulated + so we can handle that later. + */ + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; + } + + return bs->crc16; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) +{ + size_t bytesRead; + size_t alignedL1LineCount; + + /* Fast path. Try loading straight from L2. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + /* + If we get here it means we've run out of data in the L2 cache. We'll need to fetch more from the client, if there's + any left. + */ + if (bs->unalignedByteCount > 0) { + return DRFLAC_FALSE; /* If we have any unaligned bytes it means there's no more aligned bytes left in the client. */ + } + + bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); + + bs->nextL2Line = 0; + if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + + /* + If we get here it means we were unable to retrieve enough data to fill the entire L2 cache. It probably + means we've just reached the end of the file. We need to move the valid data down to the end of the buffer + and adjust the index of the next line accordingly. Also keep in mind that the L2 cache must be aligned to + the size of the L1 so we'll need to seek backwards by any misaligned bytes. + */ + alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + + /* We need to keep track of any unaligned bytes for later use. */ + bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + if (bs->unalignedByteCount > 0) { + bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; + } + + if (alignedL1LineCount > 0) { + size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; + size_t i; + for (i = alignedL1LineCount; i > 0; --i) { + bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; + } + + bs->nextL2Line = (drflac_uint32)offset; + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } else { + /* If we get into this branch it means we weren't able to load any L1-aligned data. */ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + return DRFLAC_FALSE; + } +} + +static drflac_bool32 drflac__reload_cache(drflac_bs* bs) +{ + size_t bytesRead; + +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + + /* Fast path. Try just moving the next value in the L2 cache to the L1 cache. */ + if (drflac__reload_l1_cache_from_l2(bs)) { + bs->cache = drflac__be2host__cache_line(bs->cache); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + return DRFLAC_TRUE; + } + + /* Slow path. */ + + /* + If we get here it means we have failed to load the L1 cache from the L2. Likely we've just reached the end of the stream and the last + few bytes did not meet the alignment requirements for the L2 cache. In this case we need to fall back to a slower path and read the + data from the unaligned cache. + */ + bytesRead = bs->unalignedByteCount; + if (bytesRead == 0) { + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); /* <-- The stream has been exhausted, so marked the bits as consumed. */ + return DRFLAC_FALSE; + } + + drflac_assert(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; + + bs->cache = drflac__be2host__cache_line(bs->unalignedCache); + bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs)); /* <-- Make sure the consumed bits are always set to zero. Other parts of the library depend on this property. */ + bs->unalignedByteCount = 0; /* <-- At this point the unaligned bytes have been moved into the cache and we thus have no more unaligned bytes. */ + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache >> bs->consumedBits; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +#endif + return DRFLAC_TRUE; +} + +static void drflac__reset_cache(drflac_bs* bs) +{ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); /* <-- This clears the L2 cache. */ + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); /* <-- This clears the L1 cache. */ + bs->cache = 0; + bs->unalignedByteCount = 0; /* <-- This clears the trailing unaligned bytes. */ + bs->unalignedCache = 0; + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = 0; + bs->crc16CacheIgnoredBytes = 0; +#endif +} + + +static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut) +{ + drflac_assert(bs != NULL); + drflac_assert(pResultOut != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 32); + + if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* + If we want to load all 32-bits from a 32-bit cache we need to do it slightly differently because we can't do + a 32-bit shift on a 32-bit integer. This will never be the case on 64-bit caches, so we can have a slightly + more optimal solution for this. + */ +#ifdef DRFLAC_64BIT + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; +#else + if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; + } else { + /* Cannot shift by 32-bits, so need to do it differently. */ + *pResultOut = (drflac_uint32)bs->cache; + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + } +#endif + + return DRFLAC_TRUE; + } else { + /* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */ + drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); + drflac_uint32 bitCountLo = bitCount - bitCountHi; + drflac_uint32 resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); + + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + *pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult) +{ + drflac_uint32 result; + drflac_uint32 signbit; + + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 32); + + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResult = (drflac_int32)result; + return DRFLAC_TRUE; +} + +#ifdef DRFLAC_64BIT +static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut) +{ + drflac_uint32 resultHi; + drflac_uint32 resultLo; + + drflac_assert(bitCount <= 64); + drflac_assert(bitCount > 32); + + if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_uint32(bs, 32, &resultLo)) { + return DRFLAC_FALSE; + } + + *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo); + return DRFLAC_TRUE; +} +#endif + +/* Function below is unused, but leaving it here in case I need to quickly add it again. */ +#if 0 +static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut) +{ + drflac_uint64 result; + drflac_uint64 signbit; + + drflac_assert(bitCount <= 64); + + if (!drflac__read_uint64(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResultOut = (drflac_int64)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult) +{ + drflac_uint32 result; + + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 16); + + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint16)result; + return DRFLAC_TRUE; +} + +#if 0 +static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult) +{ + drflac_int32 result; + + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 16); + + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int16)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult) +{ + drflac_uint32 result; + + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 8); + + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint8)result; + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult) +{ + drflac_int32 result; + + drflac_assert(bs != NULL); + drflac_assert(pResult != NULL); + drflac_assert(bitCount > 0); + drflac_assert(bitCount <= 8); + + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int8)result; + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) +{ + if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + bs->consumedBits += (drflac_uint32)bitsToSeek; + bs->cache <<= bitsToSeek; + return DRFLAC_TRUE; + } else { + /* It straddles the cached data. This function isn't called too frequently so I'm favouring simplicity here. */ + bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->cache = 0; + + /* Simple case. Seek in groups of the same number as bits that fit within a cache line. */ +#ifdef DRFLAC_64BIT + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint64 bin; + if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#else + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint32 bin; + if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#endif + + /* Whole leftover bytes. */ + while (bitsToSeek >= 8) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, 8, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= 8; + } + + /* Leftover bits. */ + if (bitsToSeek > 0) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek = 0; /* <-- Necessary for the assert below. */ + } + + drflac_assert(bitsToSeek == 0); + return DRFLAC_TRUE; + } +} + + +/* This function moves the bit streamer to the first bit after the sync code (bit 15 of the of the frame header). It will also update the CRC-16. */ +static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs) +{ + drflac_assert(bs != NULL); + + /* + The sync code is always aligned to 8 bits. This is convenient for us because it means we can do byte-aligned movements. The first + thing to do is align to the next byte. + */ + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + + for (;;) { + drflac_uint8 hi; + +#ifndef DR_FLAC_NO_CRC + drflac__reset_crc16(bs); +#endif + + if (!drflac__read_uint8(bs, 8, &hi)) { + return DRFLAC_FALSE; + } + + if (hi == 0xFF) { + drflac_uint8 lo; + if (!drflac__read_uint8(bs, 6, &lo)) { + return DRFLAC_FALSE; + } + + if (lo == 0x3E) { + return DRFLAC_TRUE; + } else { + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + } + } + } + + /* Should never get here. */ + /*return DRFLAC_FALSE;*/ +} + + +#if !defined(DR_FLAC_NO_SIMD) && defined(DRFLAC_HAS_LZCNT_INTRINSIC) +#define DRFLAC_IMPLEMENT_CLZ_LZCNT +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) +#define DRFLAC_IMPLEMENT_CLZ_MSVC +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x) +{ + drflac_uint32 n; + static drflac_uint32 clz_table_4[] = { + 0, + 4, + 3, 3, + 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + + if (x == 0) { + return sizeof(x)*8; + } + + n = clz_table_4[x >> (sizeof(x)*8 - 4)]; + if (n == 0) { +#ifdef DRFLAC_64BIT + if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; } + if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; } + if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; } + if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; } +#else + if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; } + if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; } + if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; } +#endif + n += clz_table_4[x >> (sizeof(x)*8 - 4)]; + } + + return n - 1; +} + +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT +static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported() +{ + /* If the compiler itself does not support the intrinsic then we'll need to return false. */ +#ifdef DRFLAC_HAS_LZCNT_INTRINSIC + return drflac__gIsLZCNTSupported; +#else + return DRFLAC_FALSE; +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x) +{ +#if defined(_MSC_VER) && !defined(__clang__) + #ifdef DRFLAC_64BIT + return (drflac_uint32)__lzcnt64(x); + #else + return (drflac_uint32)__lzcnt(x); + #endif +#else + #if defined(__GNUC__) || defined(__clang__) + if (x == 0) { + return sizeof(x)*8; + } + #ifdef DRFLAC_64BIT + return (drflac_uint32)__builtin_clzll((drflac_uint64)x); + #else + return (drflac_uint32)__builtin_clzl((drflac_uint32)x); + #endif + #else + /* Unsupported compiler. */ + #error "This compiler does not support the lzcnt intrinsic." + #endif +#endif +} +#endif + +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC +#include <intrin.h> /* For BitScanReverse(). */ + +static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x) +{ + drflac_uint32 n; + + if (x == 0) { + return sizeof(x)*8; + } + +#ifdef DRFLAC_64BIT + _BitScanReverse64((unsigned long*)&n, x); +#else + _BitScanReverse((unsigned long*)&n, x); +#endif + return sizeof(x)*8 - n - 1; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x) +{ +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT + if (drflac__is_lzcnt_supported()) { + return drflac__clz_lzcnt(x); + } else +#endif + { +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC + return drflac__clz_msvc(x); +#else + return drflac__clz_software(x); +#endif + } +} + + +static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) +{ + drflac_uint32 zeroCounter = 0; + drflac_uint32 setBitOffsetPlus1; + + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + setBitOffsetPlus1 = drflac__clz(bs->cache); + setBitOffsetPlus1 += 1; + + bs->consumedBits += setBitOffsetPlus1; + bs->cache <<= setBitOffsetPlus1; + + *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; + return DRFLAC_TRUE; +} + + + +static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart) +{ + drflac_assert(bs != NULL); + drflac_assert(offsetFromStart > 0); + + /* + Seeking from the start is not quite as trivial as it sounds because the onSeek callback takes a signed 32-bit integer (which + is intentional because it simplifies the implementation of the onSeek callbacks), however offsetFromStart is unsigned 64-bit. + To resolve we just need to do an initial seek from the start, and then a series of offset seeks to make up the remainder. + */ + if (offsetFromStart > 0x7FFFFFFF) { + drflac_uint64 bytesRemaining = offsetFromStart; + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + + while (bytesRemaining > 0x7FFFFFFF) { + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + } + + if (bytesRemaining > 0) { + if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + } + + /* The cache should be reset to force a reload of fresh data from the client. */ + drflac__reset_cache(bs); + return DRFLAC_TRUE; +} + + +static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut) +{ + drflac_uint8 crc; + drflac_uint64 result; + unsigned char utf8[7] = {0}; + int byteCount; + int i; + + drflac_assert(bs != NULL); + drflac_assert(pNumberOut != NULL); + drflac_assert(pCRCOut != NULL); + + crc = *pCRCOut; + + if (!drflac__read_uint8(bs, 8, utf8)) { + *pNumberOut = 0; + return DRFLAC_END_OF_STREAM; + } + crc = drflac_crc8(crc, utf8[0], 8); + + if ((utf8[0] & 0x80) == 0) { + *pNumberOut = utf8[0]; + *pCRCOut = crc; + return DRFLAC_SUCCESS; + } + + byteCount = 1; + if ((utf8[0] & 0xE0) == 0xC0) { + byteCount = 2; + } else if ((utf8[0] & 0xF0) == 0xE0) { + byteCount = 3; + } else if ((utf8[0] & 0xF8) == 0xF0) { + byteCount = 4; + } else if ((utf8[0] & 0xFC) == 0xF8) { + byteCount = 5; + } else if ((utf8[0] & 0xFE) == 0xFC) { + byteCount = 6; + } else if ((utf8[0] & 0xFF) == 0xFE) { + byteCount = 7; + } else { + *pNumberOut = 0; + return DRFLAC_CRC_MISMATCH; /* Bad UTF-8 encoding. */ + } + + /* Read extra bytes. */ + drflac_assert(byteCount > 1); + + result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1))); + for (i = 1; i < byteCount; ++i) { + if (!drflac__read_uint8(bs, 8, utf8 + i)) { + *pNumberOut = 0; + return DRFLAC_END_OF_STREAM; + } + crc = drflac_crc8(crc, utf8[i], 8); + + result = (result << 6) | (utf8[i] & 0x3F); + } + + *pNumberOut = result; + *pCRCOut = crc; + return DRFLAC_SUCCESS; +} + + + +/* +The next two functions are responsible for calculating the prediction. + +When the bits per sample is >16 we need to use 64-bit integer arithmetic because otherwise we'll run out of precision. It's +safe to assume this will be slower on 32-bit platforms so we use a more optimal solution when the bits per sample is <=16. +*/ +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_int32 prediction = 0; + + drflac_assert(order <= 32); + + /* 32-bit version. */ + + /* VC++ optimizes this to a single jmp. I've not yet verified this for other compilers. */ + switch (order) + { + case 32: prediction += coefficients[31] * pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; + } + + return (drflac_int32)(prediction >> shift); +} + +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_int64 prediction; + + drflac_assert(order <= 32); + + /* 64-bit version. */ + + /* This method is faster on the 32-bit build when compiling with VC++. See note below. */ +#ifndef DRFLAC_64BIT + if (order == 8) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + } + else if (order == 7) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + } + else if (order == 3) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + } + else if (order == 6) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + } + else if (order == 5) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + } + else if (order == 4) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + } + else if (order == 12) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + } + else if (order == 2) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + } + else if (order == 1) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + } + else if (order == 10) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + } + else if (order == 9) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + } + else if (order == 11) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + } + else + { + int j; + + prediction = 0; + for (j = 0; j < (int)order; ++j) { + prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1]; + } + } +#endif + + /* + VC++ optimizes this to a single jmp instruction, but only the 64-bit build. The 32-bit build generates less efficient code for some + reason. The ugly version above is faster so we'll just switch between the two depending on the target platform. + */ +#ifdef DRFLAC_64BIT + prediction = 0; + switch (order) + { + case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } +#endif + + return (drflac_int32)(prediction >> shift); +} + +static DRFLAC_INLINE void drflac__calculate_prediction_64_x4(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, const drflac_uint32 riceParamParts[4], drflac_int32* pDecodedSamples) +{ + drflac_int64 prediction0 = 0; + drflac_int64 prediction1 = 0; + drflac_int64 prediction2 = 0; + drflac_int64 prediction3 = 0; + + drflac_assert(order <= 32); + + switch (order) + { + case 32: + prediction0 += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; + prediction1 += coefficients[31] * (drflac_int64)pDecodedSamples[-31]; + prediction2 += coefficients[31] * (drflac_int64)pDecodedSamples[-30]; + prediction3 += coefficients[31] * (drflac_int64)pDecodedSamples[-29]; + case 31: + prediction0 += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; + prediction1 += coefficients[30] * (drflac_int64)pDecodedSamples[-30]; + prediction2 += coefficients[30] * (drflac_int64)pDecodedSamples[-29]; + prediction3 += coefficients[30] * (drflac_int64)pDecodedSamples[-28]; + case 30: + prediction0 += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; + prediction1 += coefficients[29] * (drflac_int64)pDecodedSamples[-29]; + prediction2 += coefficients[29] * (drflac_int64)pDecodedSamples[-28]; + prediction3 += coefficients[29] * (drflac_int64)pDecodedSamples[-27]; + case 29: + prediction0 += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; + prediction1 += coefficients[28] * (drflac_int64)pDecodedSamples[-28]; + prediction2 += coefficients[28] * (drflac_int64)pDecodedSamples[-27]; + prediction3 += coefficients[28] * (drflac_int64)pDecodedSamples[-26]; + case 28: + prediction0 += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; + prediction1 += coefficients[27] * (drflac_int64)pDecodedSamples[-27]; + prediction2 += coefficients[27] * (drflac_int64)pDecodedSamples[-26]; + prediction3 += coefficients[27] * (drflac_int64)pDecodedSamples[-25]; + case 27: + prediction0 += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; + prediction1 += coefficients[26] * (drflac_int64)pDecodedSamples[-26]; + prediction2 += coefficients[26] * (drflac_int64)pDecodedSamples[-25]; + prediction3 += coefficients[26] * (drflac_int64)pDecodedSamples[-24]; + case 26: + prediction0 += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; + prediction1 += coefficients[25] * (drflac_int64)pDecodedSamples[-25]; + prediction2 += coefficients[25] * (drflac_int64)pDecodedSamples[-24]; + prediction3 += coefficients[25] * (drflac_int64)pDecodedSamples[-23]; + case 25: + prediction0 += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; + prediction1 += coefficients[24] * (drflac_int64)pDecodedSamples[-24]; + prediction2 += coefficients[24] * (drflac_int64)pDecodedSamples[-23]; + prediction3 += coefficients[24] * (drflac_int64)pDecodedSamples[-22]; + case 24: + prediction0 += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; + prediction1 += coefficients[23] * (drflac_int64)pDecodedSamples[-23]; + prediction2 += coefficients[23] * (drflac_int64)pDecodedSamples[-22]; + prediction3 += coefficients[23] * (drflac_int64)pDecodedSamples[-21]; + case 23: + prediction0 += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; + prediction1 += coefficients[22] * (drflac_int64)pDecodedSamples[-22]; + prediction2 += coefficients[22] * (drflac_int64)pDecodedSamples[-21]; + prediction3 += coefficients[22] * (drflac_int64)pDecodedSamples[-20]; + case 22: + prediction0 += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; + prediction1 += coefficients[21] * (drflac_int64)pDecodedSamples[-21]; + prediction2 += coefficients[21] * (drflac_int64)pDecodedSamples[-20]; + prediction3 += coefficients[21] * (drflac_int64)pDecodedSamples[-19]; + case 21: + prediction0 += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; + prediction1 += coefficients[20] * (drflac_int64)pDecodedSamples[-20]; + prediction2 += coefficients[20] * (drflac_int64)pDecodedSamples[-19]; + prediction3 += coefficients[20] * (drflac_int64)pDecodedSamples[-18]; + case 20: + prediction0 += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; + prediction1 += coefficients[19] * (drflac_int64)pDecodedSamples[-19]; + prediction2 += coefficients[19] * (drflac_int64)pDecodedSamples[-18]; + prediction3 += coefficients[19] * (drflac_int64)pDecodedSamples[-17]; + case 19: + prediction0 += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; + prediction1 += coefficients[18] * (drflac_int64)pDecodedSamples[-18]; + prediction2 += coefficients[18] * (drflac_int64)pDecodedSamples[-17]; + prediction3 += coefficients[18] * (drflac_int64)pDecodedSamples[-16]; + case 18: + prediction0 += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; + prediction1 += coefficients[17] * (drflac_int64)pDecodedSamples[-17]; + prediction2 += coefficients[17] * (drflac_int64)pDecodedSamples[-16]; + prediction3 += coefficients[17] * (drflac_int64)pDecodedSamples[-15]; + case 17: + prediction0 += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; + prediction1 += coefficients[16] * (drflac_int64)pDecodedSamples[-16]; + prediction2 += coefficients[16] * (drflac_int64)pDecodedSamples[-15]; + prediction3 += coefficients[16] * (drflac_int64)pDecodedSamples[-14]; + + case 16: + prediction0 += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; + prediction1 += coefficients[15] * (drflac_int64)pDecodedSamples[-15]; + prediction2 += coefficients[15] * (drflac_int64)pDecodedSamples[-14]; + prediction3 += coefficients[15] * (drflac_int64)pDecodedSamples[-13]; + case 15: + prediction0 += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; + prediction1 += coefficients[14] * (drflac_int64)pDecodedSamples[-14]; + prediction2 += coefficients[14] * (drflac_int64)pDecodedSamples[-13]; + prediction3 += coefficients[14] * (drflac_int64)pDecodedSamples[-12]; + case 14: + prediction0 += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; + prediction1 += coefficients[13] * (drflac_int64)pDecodedSamples[-13]; + prediction2 += coefficients[13] * (drflac_int64)pDecodedSamples[-12]; + prediction3 += coefficients[13] * (drflac_int64)pDecodedSamples[-11]; + case 13: + prediction0 += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; + prediction1 += coefficients[12] * (drflac_int64)pDecodedSamples[-12]; + prediction2 += coefficients[12] * (drflac_int64)pDecodedSamples[-11]; + prediction3 += coefficients[12] * (drflac_int64)pDecodedSamples[-10]; + case 12: + prediction0 += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + prediction1 += coefficients[11] * (drflac_int64)pDecodedSamples[-11]; + prediction2 += coefficients[11] * (drflac_int64)pDecodedSamples[-10]; + prediction3 += coefficients[11] * (drflac_int64)pDecodedSamples[- 9]; + case 11: + prediction0 += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + prediction1 += coefficients[10] * (drflac_int64)pDecodedSamples[-10]; + prediction2 += coefficients[10] * (drflac_int64)pDecodedSamples[- 9]; + prediction3 += coefficients[10] * (drflac_int64)pDecodedSamples[- 8]; + case 10: + prediction0 += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction1 += coefficients[9] * (drflac_int64)pDecodedSamples[- 9]; + prediction2 += coefficients[9] * (drflac_int64)pDecodedSamples[- 8]; + prediction3 += coefficients[9] * (drflac_int64)pDecodedSamples[- 7]; + case 9: + prediction0 += coefficients[8] * (drflac_int64)pDecodedSamples[- 9]; + prediction1 += coefficients[8] * (drflac_int64)pDecodedSamples[- 8]; + prediction2 += coefficients[8] * (drflac_int64)pDecodedSamples[- 7]; + prediction3 += coefficients[8] * (drflac_int64)pDecodedSamples[- 6]; + case 8: + prediction0 += coefficients[7] * (drflac_int64)pDecodedSamples[- 8]; + prediction1 += coefficients[7] * (drflac_int64)pDecodedSamples[- 7]; + prediction2 += coefficients[7] * (drflac_int64)pDecodedSamples[- 6]; + prediction3 += coefficients[7] * (drflac_int64)pDecodedSamples[- 5]; + case 7: + prediction0 += coefficients[6] * (drflac_int64)pDecodedSamples[- 7]; + prediction1 += coefficients[6] * (drflac_int64)pDecodedSamples[- 6]; + prediction2 += coefficients[6] * (drflac_int64)pDecodedSamples[- 5]; + prediction3 += coefficients[6] * (drflac_int64)pDecodedSamples[- 4]; + case 6: + prediction0 += coefficients[5] * (drflac_int64)pDecodedSamples[- 6]; + prediction1 += coefficients[5] * (drflac_int64)pDecodedSamples[- 5]; + prediction2 += coefficients[5] * (drflac_int64)pDecodedSamples[- 4]; + prediction3 += coefficients[5] * (drflac_int64)pDecodedSamples[- 3]; + case 5: + prediction0 += coefficients[4] * (drflac_int64)pDecodedSamples[- 5]; + prediction1 += coefficients[4] * (drflac_int64)pDecodedSamples[- 4]; + prediction2 += coefficients[4] * (drflac_int64)pDecodedSamples[- 3]; + prediction3 += coefficients[4] * (drflac_int64)pDecodedSamples[- 2]; + case 4: + prediction0 += coefficients[3] * (drflac_int64)pDecodedSamples[- 4]; + prediction1 += coefficients[3] * (drflac_int64)pDecodedSamples[- 3]; + prediction2 += coefficients[3] * (drflac_int64)pDecodedSamples[- 2]; + prediction3 += coefficients[3] * (drflac_int64)pDecodedSamples[- 1]; + order = 3; + } + + switch (order) + { + case 3: prediction0 += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; + case 2: prediction0 += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; + case 1: prediction0 += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } + pDecodedSamples[0] = riceParamParts[0] + (drflac_int32)(prediction0 >> shift); + + switch (order) + { + case 3: prediction1 += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 2]; + case 2: prediction1 += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 1]; + case 1: prediction1 += coefficients[ 0] * (drflac_int64)pDecodedSamples[ 0]; + } + pDecodedSamples[1] = riceParamParts[1] + (drflac_int32)(prediction1 >> shift); + + switch (order) + { + case 3: prediction2 += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 1]; + case 2: prediction2 += coefficients[ 1] * (drflac_int64)pDecodedSamples[ 0]; + case 1: prediction2 += coefficients[ 0] * (drflac_int64)pDecodedSamples[ 1]; + } + pDecodedSamples[2] = riceParamParts[2] + (drflac_int32)(prediction2 >> shift); + + switch (order) + { + case 3: prediction3 += coefficients[ 2] * (drflac_int64)pDecodedSamples[ 0]; + case 2: prediction3 += coefficients[ 1] * (drflac_int64)pDecodedSamples[ 1]; + case 1: prediction3 += coefficients[ 0] * (drflac_int64)pDecodedSamples[ 2]; + } + pDecodedSamples[3] = riceParamParts[3] + (drflac_int32)(prediction3 >> shift); +} + +#if defined(DRFLAC_SUPPORT_SSE41) +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64__sse41(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + __m128i prediction = _mm_setzero_si128(); + + drflac_assert(order <= 32); + + switch (order) + { + case 32: + case 31: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[31], 0, coefficients[30]), _mm_set_epi32(0, pDecodedSamples[-32], 0, pDecodedSamples[-31]))); + case 30: + case 29: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[29], 0, coefficients[28]), _mm_set_epi32(0, pDecodedSamples[-30], 0, pDecodedSamples[-29]))); + case 28: + case 27: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[27], 0, coefficients[26]), _mm_set_epi32(0, pDecodedSamples[-28], 0, pDecodedSamples[-27]))); + case 26: + case 25: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[25], 0, coefficients[24]), _mm_set_epi32(0, pDecodedSamples[-26], 0, pDecodedSamples[-25]))); + case 24: + case 23: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[23], 0, coefficients[22]), _mm_set_epi32(0, pDecodedSamples[-24], 0, pDecodedSamples[-23]))); + case 22: + case 21: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[21], 0, coefficients[20]), _mm_set_epi32(0, pDecodedSamples[-22], 0, pDecodedSamples[-21]))); + case 20: + case 19: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[19], 0, coefficients[18]), _mm_set_epi32(0, pDecodedSamples[-20], 0, pDecodedSamples[-19]))); + case 18: + case 17: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[17], 0, coefficients[16]), _mm_set_epi32(0, pDecodedSamples[-18], 0, pDecodedSamples[-17]))); + case 16: + case 15: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[15], 0, coefficients[14]), _mm_set_epi32(0, pDecodedSamples[-16], 0, pDecodedSamples[-15]))); + case 14: + case 13: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[13], 0, coefficients[12]), _mm_set_epi32(0, pDecodedSamples[-14], 0, pDecodedSamples[-13]))); + case 12: + case 11: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[11], 0, coefficients[10]), _mm_set_epi32(0, pDecodedSamples[-12], 0, pDecodedSamples[-11]))); + case 10: + case 9: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 9], 0, coefficients[ 8]), _mm_set_epi32(0, pDecodedSamples[-10], 0, pDecodedSamples[- 9]))); + case 8: + case 7: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 7], 0, coefficients[ 6]), _mm_set_epi32(0, pDecodedSamples[- 8], 0, pDecodedSamples[- 7]))); + case 6: + case 5: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 5], 0, coefficients[ 4]), _mm_set_epi32(0, pDecodedSamples[- 6], 0, pDecodedSamples[- 5]))); + case 4: + case 3: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 3], 0, coefficients[ 2]), _mm_set_epi32(0, pDecodedSamples[- 4], 0, pDecodedSamples[- 3]))); + case 2: + case 1: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 1], 0, coefficients[ 0]), _mm_set_epi32(0, pDecodedSamples[- 2], 0, pDecodedSamples[- 1]))); + } + + return (drflac_int32)(( + ((drflac_uint64*)&prediction)[0] + + ((drflac_uint64*)&prediction)[1]) >> shift); +} + +static DRFLAC_INLINE void drflac__calculate_prediction_64_x2__sse41(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, const drflac_uint32 riceParamParts[4], drflac_int32* pDecodedSamples) +{ + __m128i prediction = _mm_setzero_si128(); + drflac_int64 predictions[2] = {0, 0}; + + drflac_assert(order <= 32); + + switch (order) + { + case 32: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[31], 0, coefficients[31]), _mm_set_epi32(0, pDecodedSamples[-31], 0, pDecodedSamples[-32]))); + case 31: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[30], 0, coefficients[30]), _mm_set_epi32(0, pDecodedSamples[-30], 0, pDecodedSamples[-31]))); + case 30: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[29], 0, coefficients[29]), _mm_set_epi32(0, pDecodedSamples[-29], 0, pDecodedSamples[-30]))); + case 29: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[28], 0, coefficients[28]), _mm_set_epi32(0, pDecodedSamples[-28], 0, pDecodedSamples[-29]))); + case 28: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[27], 0, coefficients[27]), _mm_set_epi32(0, pDecodedSamples[-27], 0, pDecodedSamples[-28]))); + case 27: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[26], 0, coefficients[26]), _mm_set_epi32(0, pDecodedSamples[-26], 0, pDecodedSamples[-27]))); + case 26: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[25], 0, coefficients[25]), _mm_set_epi32(0, pDecodedSamples[-25], 0, pDecodedSamples[-26]))); + case 25: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[24], 0, coefficients[24]), _mm_set_epi32(0, pDecodedSamples[-24], 0, pDecodedSamples[-25]))); + case 24: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[23], 0, coefficients[23]), _mm_set_epi32(0, pDecodedSamples[-23], 0, pDecodedSamples[-24]))); + case 23: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[22], 0, coefficients[22]), _mm_set_epi32(0, pDecodedSamples[-22], 0, pDecodedSamples[-23]))); + case 22: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[21], 0, coefficients[21]), _mm_set_epi32(0, pDecodedSamples[-21], 0, pDecodedSamples[-22]))); + case 21: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[20], 0, coefficients[20]), _mm_set_epi32(0, pDecodedSamples[-20], 0, pDecodedSamples[-21]))); + case 20: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[19], 0, coefficients[19]), _mm_set_epi32(0, pDecodedSamples[-19], 0, pDecodedSamples[-20]))); + case 19: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[18], 0, coefficients[18]), _mm_set_epi32(0, pDecodedSamples[-18], 0, pDecodedSamples[-19]))); + case 18: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[17], 0, coefficients[17]), _mm_set_epi32(0, pDecodedSamples[-17], 0, pDecodedSamples[-18]))); + case 17: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[16], 0, coefficients[16]), _mm_set_epi32(0, pDecodedSamples[-16], 0, pDecodedSamples[-17]))); + case 16: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[15], 0, coefficients[15]), _mm_set_epi32(0, pDecodedSamples[-15], 0, pDecodedSamples[-16]))); + case 15: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[14], 0, coefficients[14]), _mm_set_epi32(0, pDecodedSamples[-14], 0, pDecodedSamples[-15]))); + case 14: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[13], 0, coefficients[13]), _mm_set_epi32(0, pDecodedSamples[-13], 0, pDecodedSamples[-14]))); + case 13: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[12], 0, coefficients[12]), _mm_set_epi32(0, pDecodedSamples[-12], 0, pDecodedSamples[-13]))); + case 12: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[11], 0, coefficients[11]), _mm_set_epi32(0, pDecodedSamples[-11], 0, pDecodedSamples[-12]))); + case 11: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[10], 0, coefficients[10]), _mm_set_epi32(0, pDecodedSamples[-10], 0, pDecodedSamples[-11]))); + case 10: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 9], 0, coefficients[ 9]), _mm_set_epi32(0, pDecodedSamples[- 9], 0, pDecodedSamples[-10]))); + case 9: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 8], 0, coefficients[ 8]), _mm_set_epi32(0, pDecodedSamples[- 8], 0, pDecodedSamples[- 9]))); + case 8: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 7], 0, coefficients[ 7]), _mm_set_epi32(0, pDecodedSamples[- 7], 0, pDecodedSamples[- 8]))); + case 7: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 6], 0, coefficients[ 6]), _mm_set_epi32(0, pDecodedSamples[- 6], 0, pDecodedSamples[- 7]))); + case 6: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 5], 0, coefficients[ 5]), _mm_set_epi32(0, pDecodedSamples[- 5], 0, pDecodedSamples[- 6]))); + case 5: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 4], 0, coefficients[ 4]), _mm_set_epi32(0, pDecodedSamples[- 4], 0, pDecodedSamples[- 5]))); + case 4: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 3], 0, coefficients[ 3]), _mm_set_epi32(0, pDecodedSamples[- 3], 0, pDecodedSamples[- 4]))); + case 3: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 2], 0, coefficients[ 2]), _mm_set_epi32(0, pDecodedSamples[- 2], 0, pDecodedSamples[- 3]))); + case 2: prediction = _mm_add_epi64(prediction, _mm_mul_epi32(_mm_set_epi32(0, coefficients[ 1], 0, coefficients[ 1]), _mm_set_epi32(0, pDecodedSamples[- 1], 0, pDecodedSamples[- 2]))); + order = 1; + } + + _mm_storeu_si128((__m128i*)predictions, prediction); + + switch (order) + { + case 1: predictions[0] += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } + pDecodedSamples[0] = riceParamParts[0] + (drflac_int32)(predictions[0] >> shift); + + switch (order) + { + case 1: predictions[1] += coefficients[ 0] * (drflac_int64)pDecodedSamples[ 0]; + } + pDecodedSamples[1] = riceParamParts[1] + (drflac_int32)(predictions[1] >> shift); +} + + +static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a) +{ + return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128())); +} + +static DRFLAC_INLINE __m128i drflac__mm_slide1_epi32(__m128i a, __m128i b) +{ + /* a3a2a1a0/b3b2b1b0 -> a2a1a0b3 */ + + /* Result = a2a1a0b3 */ + __m128i b3a3b2a2 = _mm_unpackhi_epi32(a, b); + __m128i a2b3a2b3 = _mm_shuffle_epi32(b3a3b2a2, _MM_SHUFFLE(0, 3, 0, 3)); + __m128i a1a2a0b3 = _mm_unpacklo_epi32(a2b3a2b3, a); + __m128i a2a1a0b3 = _mm_shuffle_epi32(a1a2a0b3, _MM_SHUFFLE(2, 3, 1, 0)); + return a2a1a0b3; +} + +static DRFLAC_INLINE __m128i drflac__mm_slide2_epi32(__m128i a, __m128i b) +{ + /* Result = a1a0b3b2 */ + __m128i b1b0b3b2 = _mm_shuffle_epi32(b, _MM_SHUFFLE(1, 0, 3, 2)); + __m128i a1b3a0b2 = _mm_unpacklo_epi32(b1b0b3b2, a); + __m128i a1a0b3b2 = _mm_shuffle_epi32(a1b3a0b2, _MM_SHUFFLE(3, 1, 2, 0)); + return a1a0b3b2; +} + +static DRFLAC_INLINE __m128i drflac__mm_slide3_epi32(__m128i a, __m128i b) +{ + /* Result = a0b3b2b1 */ + __m128i b1a1b0a0 = _mm_unpacklo_epi32(a, b); + __m128i a0b1a0b1 = _mm_shuffle_epi32(b1a1b0a0, _MM_SHUFFLE(0, 3, 0, 3)); + __m128i b3a0b2b1 = _mm_unpackhi_epi32(a0b1a0b1, b); + __m128i a0b3b2b1 = _mm_shuffle_epi32(b3a0b2b1, _MM_SHUFFLE(2, 3, 1, 0)); + return a0b3b2b1; +} + +static DRFLAC_INLINE void drflac__calculate_prediction_32_x4__sse41(drflac_uint32 order, drflac_int32 shift, const __m128i* coefficients128, const __m128i riceParamParts128, drflac_int32* pDecodedSamples) +{ + drflac_assert(order <= 32); + + /* I don't think this is as efficient as it could be. More work needs to be done on this. */ + if (order > 0) { + drflac_int32 predictions[4]; + drflac_uint32 riceParamParts[4]; + + __m128i s_09_10_11_12 = _mm_loadu_si128((const __m128i*)(pDecodedSamples - 12)); + __m128i s_05_06_07_08 = _mm_loadu_si128((const __m128i*)(pDecodedSamples - 8)); + __m128i s_01_02_03_04 = _mm_loadu_si128((const __m128i*)(pDecodedSamples - 4)); + + __m128i prediction = _mm_setzero_si128(); + + /* + The idea with this switch is to do do a single jump based on the value of "order". In my test library, "order" is never larger than 12, so + I have decided to do a less optimal, but simpler solution in the order > 12 case. + */ + switch (order) + { + case 32: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[31], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 32)))); + case 31: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[30], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 31)))); + case 30: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[29], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 30)))); + case 29: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[28], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 29)))); + case 28: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[27], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 28)))); + case 27: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[26], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 27)))); + case 26: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[25], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 26)))); + case 25: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[24], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 25)))); + case 24: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[23], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 24)))); + case 23: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[22], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 23)))); + case 22: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[21], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 22)))); + case 21: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[20], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 21)))); + case 20: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[19], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 20)))); + case 19: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[18], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 19)))); + case 18: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[17], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 18)))); + case 17: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[16], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 17)))); + case 16: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[15], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 16)))); + case 15: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[14], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 15)))); + case 14: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[13], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 14)))); + case 13: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[12], _mm_loadu_si128((const __m128i*)(pDecodedSamples - 13)))); + + case 12: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[11], s_09_10_11_12)); + case 11: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[10], drflac__mm_slide3_epi32(s_05_06_07_08, s_09_10_11_12))); + case 10: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 9], drflac__mm_slide2_epi32(s_05_06_07_08, s_09_10_11_12))); + case 9: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 8], drflac__mm_slide1_epi32(s_05_06_07_08, s_09_10_11_12))); + case 8: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 7], s_05_06_07_08)); + case 7: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 6], drflac__mm_slide3_epi32(s_01_02_03_04, s_05_06_07_08))); + case 6: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 5], drflac__mm_slide2_epi32(s_01_02_03_04, s_05_06_07_08))); + case 5: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 4], drflac__mm_slide1_epi32(s_01_02_03_04, s_05_06_07_08))); + case 4: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 3], s_01_02_03_04)); order = 3; /* <-- Don't forget to set order to 3 here! */ + case 3: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 2], drflac__mm_slide3_epi32(_mm_setzero_si128(), s_01_02_03_04))); + case 2: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 1], drflac__mm_slide2_epi32(_mm_setzero_si128(), s_01_02_03_04))); + case 1: prediction = _mm_add_epi32(prediction, _mm_mullo_epi32(coefficients128[ 0], drflac__mm_slide1_epi32(_mm_setzero_si128(), s_01_02_03_04))); + } + + _mm_storeu_si128((__m128i*)predictions, prediction); + _mm_storeu_si128((__m128i*)riceParamParts, riceParamParts128); + + predictions[0] = riceParamParts[0] + (predictions[0] >> shift); + + switch (order) + { + case 3: predictions[3] += ((const drflac_int32*)&coefficients128[ 2])[0] * predictions[ 0]; + case 2: predictions[2] += ((const drflac_int32*)&coefficients128[ 1])[0] * predictions[ 0]; + case 1: predictions[1] += ((const drflac_int32*)&coefficients128[ 0])[0] * predictions[ 0]; + } + predictions[1] = riceParamParts[1] + (predictions[1] >> shift); + + switch (order) + { + case 3: + case 2: predictions[3] += ((const drflac_int32*)&coefficients128[ 1])[0] * predictions[ 1]; + case 1: predictions[2] += ((const drflac_int32*)&coefficients128[ 0])[0] * predictions[ 1]; + } + predictions[2] = riceParamParts[2] + (predictions[2] >> shift); + + switch (order) + { + case 3: + case 2: + case 1: predictions[3] += ((const drflac_int32*)&coefficients128[ 0])[0] * predictions[ 2]; + } + predictions[3] = riceParamParts[3] + (predictions[3] >> shift); + + pDecodedSamples[0] = predictions[0]; + pDecodedSamples[1] = predictions[1]; + pDecodedSamples[2] = predictions[2]; + pDecodedSamples[3] = predictions[3]; + } else { + _mm_storeu_si128((__m128i*)pDecodedSamples, riceParamParts128); + } +} +#endif + +#if 0 +/* +Reference implementation for reading and decoding samples with residual. This is intentionally left unoptimized for the +sake of readability and should only be used as a reference. +*/ +static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 i; + + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + for (i = 0; i < count; ++i) { + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + decodedRice |= (zeroCounter << riceParam); + if ((decodedRice & 0x01)) { + decodedRice = ~(decodedRice >> 1); + } else { + decodedRice = (decodedRice >> 1); + } + + + if (bitsPerSample > 16) { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} +#endif + +#if 0 +static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 zeroCounter = 0; + drflac_uint32 decodedRice; + + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = decodedRice; + return DRFLAC_TRUE; +} +#endif + +#if 0 +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_cache_t riceParamMask; + drflac_uint32 zeroCounter; + drflac_uint32 setBitOffsetPlus1; + drflac_uint32 riceParamPart; + drflac_uint32 riceLength; + + drflac_assert(riceParam > 0); /* <-- riceParam should never be 0. drflac__read_rice_parts__param_equals_zero() should be used instead for this case. */ + + riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); + + zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + + riceLength = setBitOffsetPlus1 + riceParam; + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength)); + + bs->consumedBits += riceLength; + bs->cache <<= riceLength; + } else { + drflac_uint32 bitCountLo; + drflac_cache_t resultHi; + + bs->consumedBits += riceLength; + bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1); /* <-- Equivalent to "if (setBitOffsetPlus1 < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { bs->cache <<= setBitOffsetPlus1; }" */ + + /* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */ + bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); + resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam); /* <-- Use DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE() if ever this function allows riceParam=0. */ + + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo)); + + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + } + + pZeroCounterOut[0] = zeroCounter; + pRiceParamPartOut[0] = riceParamPart; + + return DRFLAC_TRUE; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + /*drflac_cache_t riceParamPlus1Mask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParamPlus1);*/ + drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1); + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + + /* + The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have + no idea how this will work in practice... + */ + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + + /* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */ + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + pZeroCounterOut[0] = lzcount; + + /* + It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting + this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled + outside of this function at a higher level. + */ + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + /* Getting here means the rice parameter part is wholly contained within the current cache line. */ + pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + drflac_uint32 riceParamPartHi; + drflac_uint32 riceParamPartLo; + drflac_uint32 riceParamPartLoBitCount; + + /* + Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache + line, reload the cache, and then combine it with the head of the next cache line. + */ + + /* Grab the high part of the rice parameter part. */ + riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + + /* Before reloading the cache we need to grab the size in bits of the low part. */ + riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + drflac_assert(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); + + /* Now reload the cache. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + + /* We should now have enough information to construct the rice parameter part. */ + riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount))); + pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo; + + bs_cache <<= riceParamPartLoBitCount; + } + } else { + /* + Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call + to drflac__clz() and we need to reload the cache. + */ + drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits); + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + + lzcount = drflac__clz(bs_cache); + zeroCounter += lzcount; + + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + + pZeroCounterOut[0] = zeroCounter; + goto extract_rice_param_part; + } + + /* Make sure the cache is restored at the end of it all. */ + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + + return DRFLAC_TRUE; +} + +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x4(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + /*drflac_cache_t riceParamPlus1Mask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParamPlus1);*/ + drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1); + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + + /* + The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have + no idea how this will work in practice... + */ + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + + /* + What this is doing is trying to efficiently extract 4 rice parts at a time, the idea being that we can exploit certain properties + to our advantage to make things more efficient. + */ + int i; + for (i = 0; i < 4; ++i) { + /* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */ + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + pZeroCounterOut[i] = lzcount; + + /* + It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting + this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled + outside of this function at a higher level. + */ + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + /* Getting here means the rice parameter part is wholly contained within the current cache line. */ + pRiceParamPartOut[i] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + drflac_uint32 riceParamPartHi; + drflac_uint32 riceParamPartLo; + drflac_uint32 riceParamPartLoBitCount; + + /* + Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache + line, reload the cache, and then combine it with the head of the next cache line. + */ + + /* Grab the high part of the rice parameter part. */ + riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + + /* Before reloading the cache we need to grab the size in bits of the low part. */ + riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + + /* Now reload the cache. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + + /* We should now have enough information to construct the rice parameter part. */ + riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount))); + pRiceParamPartOut[i] = riceParamPartHi | riceParamPartLo; + + bs_cache <<= riceParamPartLoBitCount; + } + } else { + /* + Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call + to drflac__clz() and we need to reload the cache. + */ + drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits); + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + + lzcount = drflac__clz(bs_cache); + zeroCounter += lzcount; + + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + + pZeroCounterOut[i] = zeroCounter; + goto extract_rice_param_part; + } + } + + /* Make sure the cache is restored at the end of it all. */ + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + + return DRFLAC_TRUE; +} + +static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + + /* + The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have + no idea how this will work in practice... + */ + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + + /* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */ + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + /* + It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting + this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled + outside of this function at a higher level. + */ + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + /* Getting here means the rice parameter part is wholly contained within the current cache line. */ + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + /* + Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache + line, reload the cache, and then combine it with the head of the next cache line. + */ + + /* Before reloading the cache we need to grab the size in bits of the low part. */ + drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + drflac_assert(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); + + /* Now reload the cache. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + + bs_cache <<= riceParamPartLoBitCount; + } + } else { + /* + Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call + to drflac__clz() and we need to reload the cache. + */ + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + + lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + + goto extract_rice_param_part; + } + + /* Make sure the cache is restored at the end of it all. */ + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + drflac_uint32 zeroCountPart0; + drflac_uint32 zeroCountPart1; + drflac_uint32 zeroCountPart2; + drflac_uint32 zeroCountPart3; + drflac_uint32 riceParamPart0; + drflac_uint32 riceParamPart1; + drflac_uint32 riceParamPart2; + drflac_uint32 riceParamPart3; + drflac_uint32 riceParamMask; + const drflac_int32* pSamplesOutEnd; + drflac_uint32 i; + + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + riceParamMask = ~((~0UL) << riceParam); + pSamplesOutEnd = pSamplesOut + ((count >> 2) << 2); + + if (bitsPerSample >= 24) { + while (pSamplesOut < pSamplesOutEnd) { + /* + Rice extraction. It's faster to do this one at a time against local variables than it is to use the x4 version + against an array. Not sure why, but perhaps it's making more efficient use of registers? + */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + + riceParamPart0 &= riceParamMask; + riceParamPart1 &= riceParamMask; + riceParamPart2 &= riceParamMask; + riceParamPart3 &= riceParamMask; + + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3); + + pSamplesOut += 4; + } + } else { + while (pSamplesOut < pSamplesOutEnd) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + + riceParamPart0 &= riceParamMask; + riceParamPart1 &= riceParamMask; + riceParamPart2 &= riceParamMask; + riceParamPart3 &= riceParamMask; + + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3); + + pSamplesOut += 4; + } + } + + i = ((count >> 2) << 2); + while (i < count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamPart0 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + /*riceParamPart0 = (riceParamPart0 >> 1) ^ (~(riceParamPart0 & 0x01) + 1);*/ + + /* Sample reconstruction. */ + if (bitsPerSample >= 24) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + } + + i += 1; + pSamplesOut += 1; + } + + return DRFLAC_TRUE; +} + +#if defined(DRFLAC_SUPPORT_SSE41) +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + static drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + /*drflac_uint32 zeroCountParts[4];*/ + /*drflac_uint32 riceParamParts[4];*/ + + drflac_uint32 zeroCountParts0; + drflac_uint32 zeroCountParts1; + drflac_uint32 zeroCountParts2; + drflac_uint32 zeroCountParts3; + drflac_uint32 riceParamParts0; + drflac_uint32 riceParamParts1; + drflac_uint32 riceParamParts2; + drflac_uint32 riceParamParts3; + drflac_uint32 riceParamMask; + const drflac_int32* pSamplesOutEnd; + __m128i riceParamMask128; + __m128i one; + drflac_uint32 i; + + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(pSamplesOut != NULL); + + riceParamMask = ~((~0UL) << riceParam); + riceParamMask128 = _mm_set1_epi32(riceParamMask); + one = _mm_set1_epi32(0x01); + + pSamplesOutEnd = pSamplesOut + ((count >> 2) << 2); + + if (bitsPerSample >= 24) { + while (pSamplesOut < pSamplesOutEnd) { + __m128i zeroCountPart128; + __m128i riceParamPart128; + drflac_uint32 riceParamParts[4]; + + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); + riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); + + riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); + riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); + riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_mullo_epi32(_mm_and_si128(riceParamPart128, one), _mm_set1_epi32(0xFFFFFFFF))); /* <-- Only supported from SSE4.1 */ + /*riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, one)), one));*/ /* <-- SSE2 compatible */ + + _mm_storeu_si128((__m128i*)riceParamParts, riceParamPart128); + + #if defined(DRFLAC_64BIT) + /* The scalar implementation seems to be faster on 64-bit in my testing. */ + drflac__calculate_prediction_64_x4(order, shift, coefficients, riceParamParts, pSamplesOut); + #else + pSamplesOut[0] = riceParamParts[0] + drflac__calculate_prediction_64__sse41(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamParts[1] + drflac__calculate_prediction_64__sse41(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamParts[2] + drflac__calculate_prediction_64__sse41(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamParts[3] + drflac__calculate_prediction_64__sse41(order, shift, coefficients, pSamplesOut + 3); + #endif + + pSamplesOut += 4; + } + } else { + drflac_int32 coefficientsUnaligned[32*4 + 4] = {0}; + drflac_int32* coefficients128 = (drflac_int32*)(((size_t)coefficientsUnaligned + 15) & ~15); + + for (i = 0; i < order; ++i) { + coefficients128[i*4+0] = coefficients[i]; + coefficients128[i*4+1] = coefficients[i]; + coefficients128[i*4+2] = coefficients[i]; + coefficients128[i*4+3] = coefficients[i]; + } + + while (pSamplesOut < pSamplesOutEnd) { + __m128i zeroCountPart128; + __m128i riceParamPart128; + /*drflac_int32 riceParamParts[4];*/ + + /* Rice extraction. */ +#if 1 + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); + riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); +#else + if (!drflac__read_rice_parts_x4(bs, riceParam, zeroCountParts, riceParamParts)) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = _mm_set_epi32(zeroCountParts[3], zeroCountParts[2], zeroCountParts[1], zeroCountParts[0]); + riceParamPart128 = _mm_set_epi32(riceParamParts[3], riceParamParts[2], riceParamParts[1], riceParamParts[0]); +#endif + + riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); + riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); + riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_mullo_epi32(_mm_and_si128(riceParamPart128, one), _mm_set1_epi32(0xFFFFFFFF))); + +#if 1 + drflac__calculate_prediction_32_x4__sse41(order, shift, (const __m128i*)coefficients128, riceParamPart128, pSamplesOut); +#else + _mm_storeu_si128((__m128i*)riceParamParts, riceParamPart128); + + pSamplesOut[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamParts[1] + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamParts[2] + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamParts[3] + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3); +#endif + + pSamplesOut += 4; + } + } + + + i = ((count >> 2) << 2); + while (i < count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamParts0 &= riceParamMask; + riceParamParts0 |= (zeroCountParts0 << riceParam); + riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; + + /* Sample reconstruction. */ + if (bitsPerSample >= 24) { + pSamplesOut[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0); + } else { + pSamplesOut[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0); + } + + i += 1; + pSamplesOut += 1; + } + + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ +#if defined(DRFLAC_SUPPORT_SSE41) + if (drflac__gIsSSE41Supported) { + return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + } else +#endif + { + /* Scalar fallback. */ + #if 0 + return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + #else + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut); + #endif + } +} + +/* Reads and seeks past a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. */ +static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam) +{ + drflac_uint32 i; + + drflac_assert(bs != NULL); + drflac_assert(count > 0); + + for (i = 0; i < count; ++i) { + if (!drflac__seek_rice_parts(bs, riceParam)) { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 i; + + drflac_assert(bs != NULL); + drflac_assert(count > 0); + drflac_assert(unencodedBitsPerSample <= 31); /* <-- unencodedBitsPerSample is a 5 bit number, so cannot exceed 31. */ + drflac_assert(pSamplesOut != NULL); + + for (i = 0; i < count; ++i) { + if (unencodedBitsPerSample > 0) { + if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { + return DRFLAC_FALSE; + } + } else { + pSamplesOut[i] = 0; + } + + if (bitsPerSample > 16) { + pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} + + +/* +Reads and decodes the residual for the sub-frame the decoder is currently sitting on. This function should be called +when the decoder is sitting at the very start of the RESIDUAL block. The first <order> residuals will be ignored. The +<blockSize> and <order> parameters are used to determine how many residual values need to be decoded. +*/ +static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_uint8 residualMethod; + drflac_uint8 partitionOrder; + drflac_uint32 samplesInPartition; + drflac_uint32 partitionsRemaining; + + drflac_assert(bs != NULL); + drflac_assert(blockSize != 0); + drflac_assert(pDecodedSamples != NULL); /* <-- Should we allow NULL, in which case we just seek past the residual rather than do a full decode? */ + + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; /* Unknown or unsupported residual coding method. */ + } + + /* Ignore the first <order> values. */ + pDecodedSamples += order; + + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + /* + From the FLAC spec: + The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + */ + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + /* Validation check. */ + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + + samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + partitionsRemaining = (1 << partitionOrder); + for (;;) { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } + + pDecodedSamples += samplesInPartition; + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + + if (partitionOrder != 0) { + samplesInPartition = blockSize / (1 << partitionOrder); + } + } + + return DRFLAC_TRUE; +} + +/* +Reads and seeks past the residual for the sub-frame the decoder is currently sitting on. This function should be called +when the decoder is sitting at the very start of the RESIDUAL block. The first <order> residuals will be set to 0. The +<blockSize> and <order> parameters are used to determine how many residual values need to be decoded. +*/ +static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order) +{ + drflac_uint8 residualMethod; + drflac_uint8 partitionOrder; + drflac_uint32 samplesInPartition; + drflac_uint32 partitionsRemaining; + + drflac_assert(bs != NULL); + drflac_assert(blockSize != 0); + + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; /* Unknown or unsupported residual coding method. */ + } + + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + /* + From the FLAC spec: + The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + */ + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + /* Validation check. */ + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + + samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + partitionsRemaining = (1 << partitionOrder); + for (;;) + { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { + return DRFLAC_FALSE; + } + } else { + unsigned char unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { + return DRFLAC_FALSE; + } + } + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + + /* Only a single sample needs to be decoded here. */ + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + /* + We don't really need to expand this, but it does simplify the process of reading samples. If this becomes a performance issue (unlikely) + we'll want to look at a more efficient way. + */ + for (i = 0; i < blockSize; ++i) { + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + + for (i = 0; i < blockSize; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + + static drflac_int32 lpcCoefficientsTable[5][4] = { + {0, 0, 0, 0}, + {1, 0, 0, 0}, + {2, -1, 0, 0}, + {3, -3, 1, 0}, + {4, -6, 4, -1} + }; + + /* Warm up samples and coefficients. */ + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint8 i; + drflac_uint8 lpcPrecision; + drflac_int8 lpcShift; + drflac_int32 coefficients[32]; + + /* Warm up samples. */ + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; /* Invalid. */ + } + lpcPrecision += 1; + + if (!drflac__read_int8(bs, 5, &lpcShift)) { + return DRFLAC_FALSE; + } + + drflac_zero_memory(coefficients, sizeof(coefficients)); + for (i = 0; i < lpcOrder; ++i) { + if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) { + return DRFLAC_FALSE; + } + } + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header) +{ + const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; + const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; /* -1 = reserved. */ + + drflac_assert(bs != NULL); + drflac_assert(header != NULL); + + /* Keep looping until we find a valid sync code. */ + for (;;) { + drflac_uint8 crc8 = 0xCE; /* 0xCE = drflac_crc8(0, 0x3FFE, 14); */ + drflac_uint8 reserved = 0; + drflac_uint8 blockingStrategy = 0; + drflac_uint8 blockSize = 0; + drflac_uint8 sampleRate = 0; + drflac_uint8 channelAssignment = 0; + drflac_uint8 bitsPerSample = 0; + drflac_bool32 isVariableBlockSize; + + if (!drflac__find_and_seek_to_next_sync_code(bs)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, blockingStrategy, 1); + + if (!drflac__read_uint8(bs, 4, &blockSize)) { + return DRFLAC_FALSE; + } + if (blockSize == 0) { + continue; + } + crc8 = drflac_crc8(crc8, blockSize, 4); + + if (!drflac__read_uint8(bs, 4, &sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, sampleRate, 4); + + if (!drflac__read_uint8(bs, 4, &channelAssignment)) { + return DRFLAC_FALSE; + } + if (channelAssignment > 10) { + continue; + } + crc8 = drflac_crc8(crc8, channelAssignment, 4); + + if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { + return DRFLAC_FALSE; + } + if (bitsPerSample == 3 || bitsPerSample == 7) { + continue; + } + crc8 = drflac_crc8(crc8, bitsPerSample, 3); + + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + + isVariableBlockSize = blockingStrategy == 1; + if (isVariableBlockSize) { + drflac_uint64 sampleNumber; + drflac_result result = drflac__read_utf8_coded_number(bs, &sampleNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_END_OF_STREAM) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->frameNumber = 0; + header->sampleNumber = sampleNumber; + } else { + drflac_uint64 frameNumber = 0; + drflac_result result = drflac__read_utf8_coded_number(bs, &frameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_END_OF_STREAM) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->frameNumber = (drflac_uint32)frameNumber; /* <-- Safe cast. */ + header->sampleNumber = 0; + } + + + if (blockSize == 1) { + header->blockSize = 192; + } else if (blockSize >= 2 && blockSize <= 5) { + header->blockSize = 576 * (1 << (blockSize - 2)); + } else if (blockSize == 6) { + if (!drflac__read_uint16(bs, 8, &header->blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSize, 8); + header->blockSize += 1; + } else if (blockSize == 7) { + if (!drflac__read_uint16(bs, 16, &header->blockSize)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSize, 16); + header->blockSize += 1; + } else { + header->blockSize = 256 * (1 << (blockSize - 8)); + } + + + if (sampleRate <= 11) { + header->sampleRate = sampleRateTable[sampleRate]; + } else if (sampleRate == 12) { + if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 8); + header->sampleRate *= 1000; + } else if (sampleRate == 13) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + } else if (sampleRate == 14) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + header->sampleRate *= 10; + } else { + continue; /* Invalid. Assume an invalid block. */ + } + + + header->channelAssignment = channelAssignment; + + header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; + if (header->bitsPerSample == 0) { + header->bitsPerSample = streaminfoBitsPerSample; + } + + if (!drflac__read_uint8(bs, 8, &header->crc8)) { + return DRFLAC_FALSE; + } + +#ifndef DR_FLAC_NO_CRC + if (header->crc8 != crc8) { + continue; /* CRC mismatch. Loop back to the top and find the next sync code. */ + } +#endif + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) +{ + drflac_uint8 header; + int type; + + if (!drflac__read_uint8(bs, 8, &header)) { + return DRFLAC_FALSE; + } + + /* First bit should always be 0. */ + if ((header & 0x80) != 0) { + return DRFLAC_FALSE; + } + + type = (header & 0x7E) >> 1; + if (type == 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; + } else if (type == 1) { + pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; + } else { + if ((type & 0x20) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; + pSubframe->lpcOrder = (type & 0x1F) + 1; + } else if ((type & 0x08) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; + pSubframe->lpcOrder = (type & 0x07); + if (pSubframe->lpcOrder > 4) { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + pSubframe->lpcOrder = 0; + } + } else { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + } + } + + if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { + return DRFLAC_FALSE; + } + + /* Wasted bits per sample. */ + pSubframe->wastedBitsPerSample = 0; + if ((header & 0x01) == 1) { + unsigned int wastedBitsPerSample; + if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { + return DRFLAC_FALSE; + } + pSubframe->wastedBitsPerSample = (unsigned char)wastedBitsPerSample + 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut) +{ + drflac_subframe* pSubframe; + + drflac_assert(bs != NULL); + drflac_assert(frame != NULL); + + pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + /* Side channels require an extra bit per sample. Took a while to figure that one out... */ + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + /* Need to handle wasted bits per sample. */ + if (pSubframe->wastedBitsPerSample >= pSubframe->bitsPerSample) { + return DRFLAC_FALSE; + } + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = pDecodedSamplesOut; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + drflac__decode_samples__constant(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + drflac__decode_samples__verbatim(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + drflac__decode_samples__fixed(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + case DRFLAC_SUBFRAME_LPC: + { + drflac__decode_samples__lpc(bs, frame->header.blockSize, pSubframe->bitsPerSample, pSubframe->lpcOrder, pSubframe->pDecodedSamples); + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) +{ + drflac_subframe* pSubframe; + + drflac_assert(bs != NULL); + drflac_assert(frame != NULL); + + pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + /* Side channels require an extra bit per sample. Took a while to figure that one out... */ + pSubframe->bitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + pSubframe->bitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + pSubframe->bitsPerSample += 1; + } + + /* Need to handle wasted bits per sample. */ + if (pSubframe->wastedBitsPerSample >= pSubframe->bitsPerSample) { + return DRFLAC_FALSE; + } + pSubframe->bitsPerSample -= pSubframe->wastedBitsPerSample; + pSubframe->pDecodedSamples = NULL; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + if (!drflac__seek_bits(bs, pSubframe->bitsPerSample)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + unsigned int bitsToSeek = frame->header.blockSize * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_LPC: + { + unsigned char lpcPrecision; + + unsigned int bitsToSeek = pSubframe->lpcOrder * pSubframe->bitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; /* Invalid. */ + } + lpcPrecision += 1; + + + bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; /* +5 for shift. */ + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSize, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment) +{ + drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; + + drflac_assert(channelAssignment <= 10); + return lookup[channelAssignment]; +} + +static drflac_result drflac__decode_flac_frame(drflac* pFlac) +{ + int channelCount; + int i; + drflac_uint8 paddingSizeInBits; + drflac_uint16 desiredCRC16; +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16; +#endif + + /* This function should be called while the stream is sitting on the first byte after the frame header. */ + drflac_zero_memory(pFlac->currentFrame.subframes, sizeof(pFlac->currentFrame.subframes)); + + /* The frame block size must never be larger than the maximum block size defined by the FLAC stream. */ + if (pFlac->currentFrame.header.blockSize > pFlac->maxBlockSize) { + return DRFLAC_ERROR; + } + + /* The number of channels in the frame must match the channel count from the STREAMINFO block. */ + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + if (channelCount != (int)pFlac->channels) { + return DRFLAC_ERROR; + } + + for (i = 0; i < channelCount; ++i) { + if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFrame, i, pFlac->pDecodedSamples + ((pFlac->currentFrame.header.blockSize+DRFLAC_LEADING_SAMPLES) * i) + DRFLAC_LEADING_SAMPLES)) { + return DRFLAC_ERROR; + } + } + + paddingSizeInBits = DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7; + if (paddingSizeInBits > 0) { + drflac_uint8 padding = 0; + if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) { + return DRFLAC_END_OF_STREAM; + } + } + +#ifndef DR_FLAC_NO_CRC + actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_END_OF_STREAM; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; /* CRC mismatch. */ + } +#endif + + pFlac->currentFrame.samplesRemaining = pFlac->currentFrame.header.blockSize * channelCount; + + return DRFLAC_SUCCESS; +} + +static drflac_result drflac__seek_flac_frame(drflac* pFlac) +{ + int channelCount; + int i; + drflac_uint16 desiredCRC16; +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16; +#endif + + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + for (i = 0; i < channelCount; ++i) { + if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFrame, i)) { + return DRFLAC_ERROR; + } + } + + /* Padding. */ + if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) { + return DRFLAC_ERROR; + } + + /* CRC. */ +#ifndef DR_FLAC_NO_CRC + actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_END_OF_STREAM; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; /* CRC mismatch. */ + } +#endif + + return DRFLAC_SUCCESS; +} + +static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac) +{ + drflac_assert(pFlac != NULL); + + for (;;) { + drflac_result result; + + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + result = drflac__decode_flac_frame(pFlac); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_CRC_MISMATCH) { + continue; /* CRC mismatch. Skip to the next frame. */ + } else { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; + } +} + + +static void drflac__get_current_frame_sample_range(drflac* pFlac, drflac_uint64* pFirstSampleInFrameOut, drflac_uint64* pLastSampleInFrameOut) +{ + unsigned int channelCount; + drflac_uint64 firstSampleInFrame; + drflac_uint64 lastSampleInFrame; + + drflac_assert(pFlac != NULL); + + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + + firstSampleInFrame = pFlac->currentFrame.header.sampleNumber*channelCount; + if (firstSampleInFrame == 0) { + firstSampleInFrame = pFlac->currentFrame.header.frameNumber * pFlac->maxBlockSize*channelCount; + } + + lastSampleInFrame = firstSampleInFrame + (pFlac->currentFrame.header.blockSize*channelCount); + if (lastSampleInFrame > 0) { + lastSampleInFrame -= 1; /* Needs to be zero based. */ + } + + if (pFirstSampleInFrameOut) { + *pFirstSampleInFrameOut = firstSampleInFrame; + } + if (pLastSampleInFrameOut) { + *pLastSampleInFrameOut = lastSampleInFrame; + } +} + +/* This function will be replacing drflac__get_current_frame_sample_range(), but it's not currently used so I have commented it out to silence a compiler warning. */ +#if 0 +static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame) +{ + drflac_uint64 firstPCMFrame; + drflac_uint64 lastPCMFrame; + + drflac_assert(pFlac != NULL); + + firstPCMFrame = pFlac->currentFrame.header.sampleNumber; + if (firstPCMFrame == 0) { + firstPCMFrame = pFlac->currentFrame.header.frameNumber * pFlac->maxBlockSize; + } + + lastPCMFrame = firstPCMFrame + (pFlac->currentFrame.header.blockSize); + if (lastPCMFrame > 0) { + lastPCMFrame -= 1; /* Needs to be zero based. */ + } + + if (pFirstPCMFrame) { + *pFirstPCMFrame = firstPCMFrame; + } + if (pLastPCMFrame) { + *pLastPCMFrame = lastPCMFrame; + } +} +#endif + +static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac) +{ + drflac_bool32 result; + + drflac_assert(pFlac != NULL); + + result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos); + + drflac_zero_memory(&pFlac->currentFrame, sizeof(pFlac->currentFrame)); + pFlac->currentSample = 0; + + return result; +} + +static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac) +{ + /* This function should only ever be called while the decoder is sitting on the first byte past the FRAME_HEADER section. */ + drflac_assert(pFlac != NULL); + return drflac__seek_flac_frame(pFlac); +} + +drflac_uint64 drflac__seek_forward_by_samples(drflac* pFlac, drflac_uint64 samplesToRead) +{ + drflac_uint64 samplesRead = 0; + while (samplesToRead > 0) { + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + if (pFlac->currentFrame.samplesRemaining > samplesToRead) { + samplesRead += samplesToRead; + pFlac->currentFrame.samplesRemaining -= (drflac_uint32)samplesToRead; /* <-- Safe cast. Will always be < currentFrame.samplesRemaining < 65536. */ + samplesToRead = 0; + } else { + samplesRead += pFlac->currentFrame.samplesRemaining; + samplesToRead -= pFlac->currentFrame.samplesRemaining; + pFlac->currentFrame.samplesRemaining = 0; + } + } + } + + pFlac->currentSample += samplesRead; + return samplesRead; +} + +drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek) +{ + return drflac__seek_forward_by_samples(pFlac, pcmFramesToSeek*pFlac->channels); +} + +static drflac_bool32 drflac__seek_to_sample__brute_force(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_bool32 isMidFrame = DRFLAC_FALSE; + drflac_uint64 runningSampleCount; + + drflac_assert(pFlac != NULL); + + /* If we are seeking forward we start from the current position. Otherwise we need to start all the way from the start of the file. */ + if (sampleIndex >= pFlac->currentSample) { + /* Seeking forward. Need to seek from the current position. */ + runningSampleCount = pFlac->currentSample; + + /* The frame header for the first frame may not yet have been read. We need to do that if necessary. */ + if (pFlac->currentSample == 0 && pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + /* Seeking backwards. Need to seek from the start of the file. */ + runningSampleCount = 0; + + /* Move back to the start. */ + if (!drflac__seek_to_first_frame(pFlac)) { + return DRFLAC_FALSE; + } + + /* Decode the first frame in preparation for sample-exact seeking below. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } + + /* + We need to as quickly as possible find the frame that contains the target sample. To do this, we iterate over each frame and inspect its + header. If based on the header we can determine that the frame contains the sample, we do a full decode of that frame. + */ + for (;;) { + drflac_uint64 sampleCountInThisFrame; + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + /* + The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + it never existed and keep iterating. + */ + drflac_uint64 samplesToDecode = sampleIndex - runningSampleCount; + + if (!isMidFrame) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + /* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */ + return drflac__seek_forward_by_samples(pFlac, samplesToDecode) == samplesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */ + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* We started seeking mid-frame which means we need to skip the frame decoding part. */ + return drflac__seek_forward_by_samples(pFlac, samplesToDecode) == samplesToDecode; + } + } else { + /* + It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + frame never existed and leave the running sample count untouched. + */ + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* + We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with + drflac__seek_to_next_flac_frame() which only works if the decoder is sitting on the byte just after the frame header. + */ + runningSampleCount += pFlac->currentFrame.samplesRemaining; + pFlac->currentFrame.samplesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + } + + next_iteration: + /* Grab the next frame in preparation for the next iteration. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } +} + + +static drflac_bool32 drflac__seek_to_sample__seek_table(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_uint32 iClosestSeekpoint = 0; + drflac_bool32 isMidFrame = DRFLAC_FALSE; + drflac_uint64 runningSampleCount; + drflac_uint32 iSeekpoint; + + drflac_assert(pFlac != NULL); + + if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) { + return DRFLAC_FALSE; + } + + for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + if (pFlac->pSeekpoints[iSeekpoint].firstSample*pFlac->channels >= sampleIndex) { + break; + } + + iClosestSeekpoint = iSeekpoint; + } + + /* + At this point we should have found the seekpoint closest to our sample. If we are seeking forward and the closest seekpoint is _before_ the current sample, we + just seek forward from where we are. Otherwise we start seeking from the seekpoint's first sample. + */ + if ((sampleIndex >= pFlac->currentSample) && (pFlac->pSeekpoints[iClosestSeekpoint].firstSample*pFlac->channels <= pFlac->currentSample)) { + /* Optimized case. Just seek forward from where we are. */ + runningSampleCount = pFlac->currentSample; + + /* The frame header for the first frame may not yet have been read. We need to do that if necessary. */ + if (pFlac->currentSample == 0 && pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + /* Slower case. Seek to the start of the seekpoint and then seek forward from there. */ + runningSampleCount = pFlac->pSeekpoints[iClosestSeekpoint].firstSample*pFlac->channels; + + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos + pFlac->pSeekpoints[iClosestSeekpoint].frameOffset)) { + return DRFLAC_FALSE; + } + + /* Grab the frame the seekpoint is sitting on in preparation for the sample-exact seeking below. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } + + for (;;) { + drflac_uint64 sampleCountInThisFrame; + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + /* + The sample should be in this frame. We need to fully decode it, but if it's an invalid frame (a CRC mismatch) we need to pretend + it never existed and keep iterating. + */ + drflac_uint64 samplesToDecode = sampleIndex - runningSampleCount; + + if (!isMidFrame) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + /* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */ + return drflac__seek_forward_by_samples(pFlac, samplesToDecode) == samplesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */ + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* We started seeking mid-frame which means we need to skip the frame decoding part. */ + return drflac__seek_forward_by_samples(pFlac, samplesToDecode) == samplesToDecode; + } + } else { + /* + It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + frame never existed and leave the running sample count untouched. + */ + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* + We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with + drflac__seek_to_next_flac_frame() which only works if the decoder is sitting on the byte just after the frame header. + */ + runningSampleCount += pFlac->currentFrame.samplesRemaining; + pFlac->currentFrame.samplesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + } + + next_iteration: + /* Grab the next frame in preparation for the next iteration. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + } +} + + +#ifndef DR_FLAC_NO_OGG +typedef struct +{ + drflac_uint8 capturePattern[4]; /* Should be "OggS" */ + drflac_uint8 structureVersion; /* Always 0. */ + drflac_uint8 headerType; + drflac_uint64 granulePosition; + drflac_uint32 serialNumber; + drflac_uint32 sequenceNumber; + drflac_uint32 checksum; + drflac_uint8 segmentCount; + drflac_uint8 segmentTable[255]; +} drflac_ogg_page_header; +#endif + +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + drflac_meta_proc onMeta; + drflac_container container; + void* pUserData; + void* pUserDataMD; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalSampleCount; + drflac_uint16 maxBlockSize; + drflac_uint64 runningFilePos; + drflac_bool32 hasStreamInfoBlock; + drflac_bool32 hasMetadataBlocks; + drflac_bs bs; /* <-- A bit streamer is required for loading data during initialization. */ + drflac_frame_header firstFrameHeader; /* <-- The header of the first frame that was read during relaxed initalization. Only set if there is no STREAMINFO block. */ + +#ifndef DR_FLAC_NO_OGG + drflac_uint32 oggSerial; + drflac_uint64 oggFirstBytePos; + drflac_ogg_page_header oggBosHeader; +#endif +} drflac_init_info; + +static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + blockHeader = drflac__be2host_32(blockHeader); + *isLastBlock = (blockHeader & 0x80000000UL) >> 31; + *blockType = (blockHeader & 0x7F000000UL) >> 24; + *blockSize = (blockHeader & 0x00FFFFFFUL); +} + +static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + drflac_uint32 blockHeader; + if (onRead(pUserData, &blockHeader, 4) != 4) { + return DRFLAC_FALSE; + } + + drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) +{ + drflac_uint32 blockSizes; + drflac_uint64 frameSizes = 0; + drflac_uint64 importantProps; + drflac_uint8 md5[16]; + + /* min/max block size. */ + if (onRead(pUserData, &blockSizes, 4) != 4) { + return DRFLAC_FALSE; + } + + /* min/max frame size. */ + if (onRead(pUserData, &frameSizes, 6) != 6) { + return DRFLAC_FALSE; + } + + /* Sample rate, channels, bits per sample and total sample count. */ + if (onRead(pUserData, &importantProps, 8) != 8) { + return DRFLAC_FALSE; + } + + /* MD5 */ + if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { + return DRFLAC_FALSE; + } + + blockSizes = drflac__be2host_32(blockSizes); + frameSizes = drflac__be2host_64(frameSizes); + importantProps = drflac__be2host_64(importantProps); + + pStreamInfo->minBlockSize = (blockSizes & 0xFFFF0000) >> 16; + pStreamInfo->maxBlockSize = (blockSizes & 0x0000FFFF); + pStreamInfo->minFrameSize = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40); + pStreamInfo->maxFrameSize = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16); + pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44); + pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1; + pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1; + pStreamInfo->totalSampleCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF))) * pStreamInfo->channels; + drflac_copy_memory(pStreamInfo->md5, md5, sizeof(md5)); + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeektableSize) +{ + /* + We want to keep track of the byte position in the stream of the seektable. At the time of calling this function we know that + we'll be sitting on byte 42. + */ + drflac_uint64 runningFilePos = 42; + drflac_uint64 seektablePos = 0; + drflac_uint32 seektableSize = 0; + + for (;;) { + drflac_metadata metadata; + drflac_uint8 isLastBlock = 0; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + runningFilePos += 4; + + metadata.type = blockType; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + + switch (blockType) + { + case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: + { + if (blockSize < 4) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData); + metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32)); + metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32); + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: + { + seektablePos = runningFilePos; + seektableSize = blockSize; + + if (onMeta) { + drflac_uint32 iSeekpoint; + void* pRawData; + + pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint); + metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; + + /* Endian swap. */ + for (iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) { + drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; + pSeekpoint->firstSample = drflac__be2host_64(pSeekpoint->firstSample); + pSeekpoint->frameOffset = drflac__be2host_64(pSeekpoint->frameOffset); + pSeekpoint->sampleCount = drflac__be2host_16(pSeekpoint->sampleCount); + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: + { + if (blockSize < 8) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + drflac_uint32 i; + + pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + + metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + /* Need space for the rest of the block */ + if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; + metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + /* Need space for 'commentCount' comments after the block, which at minimum is a drflac_uint32 per comment */ + if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) { /* <-- Note the order of operations to avoid overflow to a valid value */ + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.pComments = pRunningData; + + /* Check that the comments section is valid before passing it to the callback */ + for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) { + drflac_uint32 commentLength; + + if (pRunningDataEnd - pRunningData < 4) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + commentLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + pRunningData += commentLength; + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: + { + if (blockSize < 396) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + drflac_uint8 iTrack; + drflac_uint8 iIndex; + + pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + + drflac_copy_memory(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; + metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8; + metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259; + metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; + metadata.data.cuesheet.pTrackData = pRunningData; + + /* Check that the cuesheet tracks are valid before passing it to the callback */ + for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) { + drflac_uint8 indexCount; + drflac_uint32 indexPointSize; + + if (pRunningDataEnd - pRunningData < 36) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + /* Skip to the index point count */ + pRunningData += 35; + indexCount = pRunningData[0]; pRunningData += 1; + indexPointSize = indexCount * sizeof(drflac_cuesheet_track_index); + if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + /* Endian swap. */ + for (iIndex = 0; iIndex < indexCount; ++iIndex) { + drflac_cuesheet_track_index* pTrack = (drflac_cuesheet_track_index*)pRunningData; + pRunningData += sizeof(drflac_cuesheet_track_index); + pTrack->offset = drflac__be2host_64(pTrack->offset); + } + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: + { + if (blockSize < 32) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + + pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + + metadata.data.picture.type = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.mimeLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + /* Need space for the rest of the block */ + if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; + metadata.data.picture.descriptionLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + + /* Need space for the rest of the block */ + if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength; + metadata.data.picture.width = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.height = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.colorDepth = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.indexColorCount = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pictureDataSize = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData; + + /* Need space for the picture after the block */ + if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) { /* <-- Note the order of operations to avoid overflow to a valid value */ + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PADDING: + { + if (onMeta) { + metadata.data.padding.unused = 0; + + /* Padding doesn't have anything meaningful in it, so just skip over it, but make sure the caller is aware of it by firing the callback. */ + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; /* An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. */ + } else { + onMeta(pUserDataMD, &metadata); + } + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_INVALID: + { + /* Invalid chunk. Just skip over this one. */ + if (onMeta) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; /* An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. */ + } + } + } break; + + default: + { + /* + It's an unknown chunk, but not necessarily invalid. There's a chance more metadata blocks might be defined later on, so we + can at the very least report the chunk to the application and let it look at the raw data. + */ + if (onMeta) { + void* pRawData = DRFLAC_MALLOC(blockSize); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + DRFLAC_FREE(pRawData); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + onMeta(pUserDataMD, &metadata); + + DRFLAC_FREE(pRawData); + } + } break; + } + + /* If we're not handling metadata, just skip over the block. If we are, it will have been handled earlier in the switch statement above. */ + if (onMeta == NULL && blockSize > 0) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } + } + + runningFilePos += blockSize; + if (isLastBlock) { + break; + } + } + + *pSeektablePos = seektablePos; + *pSeektableSize = seektableSize; + *pFirstFramePos = runningFilePos; + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + /* Pre Condition: The bit stream should be sitting just past the 4-byte id header. */ + + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + + (void)onSeek; + + pInit->container = drflac_container_native; + + /* The first metadata block should be the STREAMINFO block. */ + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + if (!relaxed) { + /* We're opening in strict mode and the first block is not the STREAMINFO block. Error. */ + return DRFLAC_FALSE; + } else { + /* + Relaxed mode. To open from here we need to just find the first frame and set the sample rate, etc. to whatever is defined + for that frame. + */ + pInit->hasStreamInfoBlock = DRFLAC_FALSE; + pInit->hasMetadataBlocks = DRFLAC_FALSE; + + if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) { + return DRFLAC_FALSE; /* Couldn't find a frame. */ + } + + if (pInit->firstFrameHeader.bitsPerSample == 0) { + return DRFLAC_FALSE; /* Failed to initialize because the first frame depends on the STREAMINFO block, which does not exist. */ + } + + pInit->sampleRate = pInit->firstFrameHeader.sampleRate; + pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment); + pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample; + pInit->maxBlockSize = 65535; /* <-- See notes here: https://xiph.org/flac/format.html#metadata_block_streaminfo */ + return DRFLAC_TRUE; + } + } else { + drflac_streaminfo streaminfo; + if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + return DRFLAC_FALSE; + } + + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; /* Don't care about the min block size - only the max (used for determining the size of the memory allocation). */ + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + return DRFLAC_TRUE; + } +} + +#ifndef DR_FLAC_NO_OGG +#define DRFLAC_OGG_MAX_PAGE_SIZE 65307 +#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 /* CRC-32 of "OggS". */ + +typedef enum +{ + drflac_ogg_recover_on_crc_mismatch, + drflac_ogg_fail_on_crc_mismatch +} drflac_ogg_crc_mismatch_recovery; + +#ifndef DR_FLAC_NO_CRC +static drflac_uint32 drflac__crc32_table[] = { + 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L, + 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L, + 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L, + 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL, + 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L, + 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L, + 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L, + 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL, + 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L, + 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L, + 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L, + 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL, + 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L, + 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L, + 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L, + 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL, + 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL, + 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L, + 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L, + 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL, + 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL, + 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L, + 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L, + 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL, + 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL, + 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L, + 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L, + 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL, + 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL, + 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L, + 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L, + 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL, + 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L, + 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL, + 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL, + 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L, + 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L, + 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL, + 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL, + 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L, + 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L, + 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL, + 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL, + 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L, + 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L, + 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL, + 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL, + 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L, + 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L, + 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL, + 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L, + 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L, + 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L, + 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL, + 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L, + 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L, + 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L, + 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL, + 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L, + 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L, + 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L, + 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL, + 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L, + 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L +}; +#endif + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data) +{ +#ifndef DR_FLAC_NO_CRC + return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data]; +#else + (void)data; + return crc32; +#endif +} + +#if 0 +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data) +{ + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF)); + return crc32; +} + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data) +{ + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF)); + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF)); + return crc32; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize) +{ + /* This can be optimized. */ + drflac_uint32 i; + for (i = 0; i < dataSize; ++i) { + crc32 = drflac_crc32_byte(crc32, pData[i]); + } + return crc32; +} + + +static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4]) +{ + return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) +{ + return 27 + pHeader->segmentCount; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) +{ + drflac_uint32 pageBodySize = 0; + int i; + + for (i = 0; i < pHeader->segmentCount; ++i) { + pageBodySize += pHeader->segmentTable[i]; + } + + return pageBodySize; +} + +drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_uint8 data[23]; + drflac_uint32 i; + + drflac_assert(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32); + + if (onRead(pUserData, data, 23) != 23) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 23; + + pHeader->structureVersion = data[0]; + pHeader->headerType = data[1]; + drflac_copy_memory(&pHeader->granulePosition, &data[ 2], 8); + drflac_copy_memory(&pHeader->serialNumber, &data[10], 4); + drflac_copy_memory(&pHeader->sequenceNumber, &data[14], 4); + drflac_copy_memory(&pHeader->checksum, &data[18], 4); + pHeader->segmentCount = data[22]; + + /* Calculate the CRC. Note that for the calculation the checksum part of the page needs to be set to 0. */ + data[18] = 0; + data[19] = 0; + data[20] = 0; + data[21] = 0; + + for (i = 0; i < 23; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]); + } + + + if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += pHeader->segmentCount; + + for (i = 0; i < pHeader->segmentCount; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]); + } + + return DRFLAC_SUCCESS; +} + +drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_uint8 id[4]; + + *pBytesRead = 0; + + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 4; + + /* We need to read byte-by-byte until we find the OggS capture pattern. */ + for (;;) { + if (drflac_ogg__is_capture_pattern(id)) { + drflac_result result; + + *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + + result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32); + if (result == DRFLAC_SUCCESS) { + return DRFLAC_SUCCESS; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return result; + } + } + } else { + /* The first 4 bytes did not equal the capture pattern. Read the next byte and try again. */ + id[0] = id[1]; + id[1] = id[2]; + id[2] = id[3]; + if (onRead(pUserData, &id[3], 1) != 1) { + return DRFLAC_END_OF_STREAM; + } + *pBytesRead += 1; + } + } +} + + +/* +The main part of the Ogg encapsulation is the conversion from the physical Ogg bitstream to the native FLAC bitstream. It works +in three general stages: Ogg Physical Bitstream -> Ogg/FLAC Logical Bitstream -> FLAC Native Bitstream. dr_flac is designed +in such a way that the core sections assume everything is delivered in native format. Therefore, for each encapsulation type +dr_flac is supporting there needs to be a layer sitting on top of the onRead and onSeek callbacks that ensures the bits read from +the physical Ogg bitstream are converted and delivered in native FLAC format. +*/ +typedef struct +{ + drflac_read_proc onRead; /* The original onRead callback from drflac_open() and family. */ + drflac_seek_proc onSeek; /* The original onSeek callback from drflac_open() and family. */ + void* pUserData; /* The user data passed on onRead and onSeek. This is the user data that was passed on drflac_open() and family. */ + drflac_uint64 currentBytePos; /* The position of the byte we are sitting on in the physical byte stream. Used for efficient seeking. */ + drflac_uint64 firstBytePos; /* The position of the first byte in the physical bitstream. Points to the start of the "OggS" identifier of the FLAC bos page. */ + drflac_uint32 serialNumber; /* The serial number of the FLAC audio pages. This is determined by the initial header page that was read during initialization. */ + drflac_ogg_page_header bosPageHeader; /* Used for seeking. */ + drflac_ogg_page_header currentPageHeader; + drflac_uint32 bytesRemainingInPage; + drflac_uint32 pageDataSize; + drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE]; +} drflac_oggbs; /* oggbs = Ogg Bitstream */ + +static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) +{ + size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); + oggbs->currentBytePos += bytesActuallyRead; + + return bytesActuallyRead; +} + +static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin) +{ + if (origin == drflac_seek_origin_start) { + if (offset <= 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return DRFLAC_TRUE; + } else { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); + } + } else { + while (offset > 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += 0x7FFFFFFF; + offset -= 0x7FFFFFFF; + } + + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { /* <-- Safe cast thanks to the loop above. */ + return DRFLAC_FALSE; + } + oggbs->currentBytePos += offset; + + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod) +{ + drflac_ogg_page_header header; + for (;;) { + drflac_uint32 crc32 = 0; + drflac_uint32 bytesRead; + drflac_uint32 pageBodySize; +#ifndef DR_FLAC_NO_CRC + drflac_uint32 actualCRC32; +#endif + + if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += bytesRead; + + pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) { + continue; /* Invalid page size. Assume it's corrupted and just move to the next page. */ + } + + if (header.serialNumber != oggbs->serialNumber) { + /* It's not a FLAC page. Skip it. */ + if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + continue; + } + + + /* We need to read the entire page and then do a CRC check on it. If there's a CRC mismatch we need to skip this page. */ + if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) { + return DRFLAC_FALSE; + } + oggbs->pageDataSize = pageBodySize; + +#ifndef DR_FLAC_NO_CRC + actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize); + if (actualCRC32 != header.checksum) { + if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) { + continue; /* CRC mismatch. Skip this page. */ + } else { + /* + Even though we are failing on a CRC mismatch, we still want our stream to be in a good state. Therefore we + go to the next valid page to ensure we're in a good state, but return false to let the caller know that the + seek did not fully complete. + */ + drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch); + return DRFLAC_FALSE; + } + } +#else + (void)recoveryMethod; /* <-- Silence a warning. */ +#endif + + oggbs->currentPageHeader = header; + oggbs->bytesRemainingInPage = pageBodySize; + return DRFLAC_TRUE; + } +} + +/* Function below is unused at the moment, but I might be re-adding it later. */ +#if 0 +static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg) +{ + drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; + drflac_uint8 iSeg = 0; + drflac_uint32 iByte = 0; + while (iByte < bytesConsumedInPage) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (iByte + segmentSize > bytesConsumedInPage) { + break; + } else { + iSeg += 1; + iByte += segmentSize; + } + } + + *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte); + return iSeg; +} + +static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) +{ + /* The current packet ends when we get to the segment with a lacing value of < 255 which is not at the end of a page. */ + for (;;) { + drflac_bool32 atEndOfPage = DRFLAC_FALSE; + + drflac_uint8 bytesRemainingInSeg; + drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); + + drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg; + for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (segmentSize < 255) { + if (iSeg == oggbs->currentPageHeader.segmentCount-1) { + atEndOfPage = DRFLAC_TRUE; + } + + break; + } + + bytesToEndOfPacketOrPage += segmentSize; + } + + /* + At this point we will have found either the packet or the end of the page. If were at the end of the page we'll + want to load the next page and keep searching for the end of the packet. + */ + drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); + oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; + + if (atEndOfPage) { + /* + We're potentially at the next packet, but we need to check the next page first to be sure because the packet may + straddle pages. + */ + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DRFLAC_FALSE; + } + + /* If it's a fresh packet it most likely means we're at the next packet. */ + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + return DRFLAC_TRUE; + } + } else { + /* We're at the next packet. */ + return DRFLAC_TRUE; + } + } +} + +static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) +{ + /* The bitstream should be sitting on the first byte just after the header of the frame. */ + + /* What we're actually doing here is seeking to the start of the next packet. */ + return drflac_oggbs__seek_to_next_packet(oggbs); +} +#endif + +static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut; + size_t bytesRead = 0; + + drflac_assert(oggbs != NULL); + drflac_assert(pRunningBufferOut != NULL); + + /* Reading is done page-by-page. If we've run out of bytes in the page we need to move to the next one. */ + while (bytesRead < bytesToRead) { + size_t bytesRemainingToRead = bytesToRead - bytesRead; + + if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { + drflac_copy_memory(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead); + bytesRead += bytesRemainingToRead; + oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead; + break; + } + + /* If we get here it means some of the requested data is contained in the next pages. */ + if (oggbs->bytesRemainingInPage > 0) { + drflac_copy_memory(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage); + bytesRead += oggbs->bytesRemainingInPage; + pRunningBufferOut += oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + drflac_assert(bytesRemainingToRead > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + break; /* Failed to go to the next page. Might have simply hit the end of the stream. */ + } + } + + return bytesRead; +} + +static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + int bytesSeeked = 0; + + drflac_assert(oggbs != NULL); + drflac_assert(offset >= 0); /* <-- Never seek backwards. */ + + /* Seeking is always forward which makes things a lot simpler. */ + if (origin == drflac_seek_origin_start) { + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); + } + + drflac_assert(origin == drflac_seek_origin_current); + + while (bytesSeeked < offset) { + int bytesRemainingToSeek = offset - bytesSeeked; + drflac_assert(bytesRemainingToSeek >= 0); + + if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { + bytesSeeked += bytesRemainingToSeek; + oggbs->bytesRemainingInPage -= bytesRemainingToSeek; + break; + } + + /* If we get here it means some of the requested data is contained in the next pages. */ + if (oggbs->bytesRemainingInPage > 0) { + bytesSeeked += (int)oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + drflac_assert(bytesRemainingToSeek > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + /* Failed to go to the next page. We either hit the end of the stream or had a CRC mismatch. */ + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + +drflac_bool32 drflac_ogg__seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + drflac_uint64 originalBytePos; + drflac_uint64 runningGranulePosition; + drflac_uint64 runningFrameBytePos; + drflac_uint64 runningSampleCount; + + drflac_assert(oggbs != NULL); + + originalBytePos = oggbs->currentBytePos; /* For recovery. */ + + /* First seek to the first frame. */ + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFramePos)) { + return DRFLAC_FALSE; + } + oggbs->bytesRemainingInPage = 0; + + runningGranulePosition = 0; + runningFrameBytePos = oggbs->currentBytePos; /* <-- Points to the OggS identifier. */ + for (;;) { + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DRFLAC_FALSE; /* Never did find that sample... */ + } + + runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize; + if (oggbs->currentPageHeader.granulePosition*pFlac->channels >= sampleIndex) { + break; /* The sample is somewhere in the previous page. */ + } + + /* + At this point we know the sample is not in the previous page. It could possibly be in this page. For simplicity we + disregard any pages that do not begin a fresh packet. + */ + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { /* <-- Is it a fresh page? */ + if (oggbs->currentPageHeader.segmentTable[0] >= 2) { + drflac_uint8 firstBytesInPage[2]; + firstBytesInPage[0] = oggbs->pageData[0]; + firstBytesInPage[1] = oggbs->pageData[1]; + + if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { /* <-- Does the page begin with a frame's sync code? */ + runningGranulePosition = oggbs->currentPageHeader.granulePosition*pFlac->channels; + } + + continue; + } + } + } + + /* + We found the page that that is closest to the sample, so now we need to find it. The first thing to do is seek to the + start of that page. In the loop above we checked that it was a fresh page which means this page is also the start of + a new frame. This property means that after we've seeked to the page we can immediately start looping over frames until + we find the one containing the target sample. + */ + if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + /* + At this point we'll be sitting on the first byte of the frame header of the first frame in the page. We just keep + looping over these frames until we find the one containing the sample we're after. + */ + runningSampleCount = runningGranulePosition; + for (;;) { + /* + There are two ways to find the sample and seek past irrelevant frames: + 1) Use the native FLAC decoder. + 2) Use Ogg's framing system. + + Both of these options have their own pros and cons. Using the native FLAC decoder is slower because it needs to + do a full decode of the frame. Using Ogg's framing system is faster, but more complicated and involves some code + duplication for the decoding of frame headers. + + Another thing to consider is that using the Ogg framing system will perform direct seeking of the physical Ogg + bitstream. This is important to consider because it means we cannot read data from the drflac_bs object using the + standard drflac__*() APIs because that will read in extra data for its own internal caching which in turn breaks + the positioning of the read pointer of the physical Ogg bitstream. Therefore, anything that would normally be read + using the native FLAC decoding APIs, such as drflac__read_next_flac_frame_header(), need to be re-implemented so as to + avoid the use of the drflac_bs object. + + Considering these issues, I have decided to use the slower native FLAC decoding method for the following reasons: + 1) Seeking is already partially accelerated using Ogg's paging system in the code block above. + 2) Seeking in an Ogg encapsulated FLAC stream is probably quite uncommon. + 3) Simplicity. + */ + drflac_uint64 firstSampleInFrame = 0; + drflac_uint64 lastSampleInFrame = 0; + drflac_uint64 sampleCountInThisFrame; + + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + return DRFLAC_FALSE; + } + + drflac__get_current_frame_sample_range(pFlac, &firstSampleInFrame, &lastSampleInFrame); + + sampleCountInThisFrame = (lastSampleInFrame - firstSampleInFrame) + 1; + if (sampleIndex < (runningSampleCount + sampleCountInThisFrame)) { + /* + The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + it never existed and keep iterating. + */ + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + /* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */ + drflac_uint64 samplesToDecode = (size_t)(sampleIndex - runningSampleCount); /* <-- Safe cast because the maximum number of samples in a frame is 65535. */ + if (samplesToDecode == 0) { + return DRFLAC_TRUE; + } + return drflac__seek_forward_by_samples(pFlac, samplesToDecode) == samplesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */ + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* + It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + frame never existed and leave the running sample count untouched. + */ + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningSampleCount += sampleCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } + } +} + + +drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + drflac_ogg_page_header header; + drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + drflac_uint32 bytesRead = 0; + + /* Pre Condition: The bit stream should be sitting just past the 4-byte OggS capture pattern. */ + (void)relaxed; + + pInit->container = drflac_container_ogg; + pInit->oggFirstBytePos = 0; + + /* + We'll get here if the first 4 bytes of the stream were the OggS capture pattern, however it doesn't necessarily mean the + stream includes FLAC encoded audio. To check for this we need to scan the beginning-of-stream page markers and check if + any match the FLAC specification. Important to keep in mind that the stream may be multiplexed. + */ + if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + + for (;;) { + int pageBodySize; + + /* Break if we're past the beginning of stream page. */ + if ((header.headerType & 0x02) == 0) { + return DRFLAC_FALSE; + } + + /* Check if it's a FLAC header. */ + pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize == 51) { /* 51 = the lacing value of the FLAC header packet. */ + /* It could be a FLAC page... */ + drflac_uint32 bytesRemainingInPage = pageBodySize; + drflac_uint8 packetType; + + if (onRead(pUserData, &packetType, 1) != 1) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 1; + if (packetType == 0x7F) { + /* Increasingly more likely to be a FLAC page... */ + drflac_uint8 sig[4]; + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 4; + if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') { + /* Almost certainly a FLAC page... */ + drflac_uint8 mappingVersion[2]; + if (onRead(pUserData, mappingVersion, 2) != 2) { + return DRFLAC_FALSE; + } + + if (mappingVersion[0] != 1) { + return DRFLAC_FALSE; /* Only supporting version 1.x of the Ogg mapping. */ + } + + /* + The next 2 bytes are the non-audio packets, not including this one. We don't care about this because we're going to + be handling it in a generic way based on the serial number and packet types. + */ + if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + + /* Expecting the native FLAC signature "fLaC". */ + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') { + /* The remaining data in the page should be the STREAMINFO block. */ + drflac_streaminfo streaminfo; + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DRFLAC_FALSE; /* Invalid block type. First block must be the STREAMINFO block. */ + } + + if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + /* Success! */ + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalSampleCount = streaminfo.totalSampleCount; + pInit->maxBlockSize = streaminfo.maxBlockSize; + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + pInit->runningFilePos += pageBodySize; + pInit->oggFirstBytePos = pInit->runningFilePos - 79; /* Subtracting 79 will place us right on top of the "OggS" identifier of the FLAC bos page. */ + pInit->oggSerial = header.serialNumber; + pInit->oggBosHeader = header; + break; + } else { + /* Failed to read STREAMINFO block. Aww, so close... */ + return DRFLAC_FALSE; + } + } else { + /* Invalid file. */ + return DRFLAC_FALSE; + } + } else { + /* Not a FLAC header. Skip it. */ + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + /* Not a FLAC header. Seek past the entire page and move on to the next. */ + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + + pInit->runningFilePos += pageBodySize; + + + /* Read the header of the next page. */ + if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + } + + /* + If we get here it means we found a FLAC audio stream. We should be sitting on the first byte of the header of the next page. The next + packets in the FLAC logical stream contain the metadata. The only thing left to do in the initialization phase for Ogg is to create the + Ogg bistream object. + */ + pInit->hasMetadataBlocks = DRFLAC_TRUE; /* <-- Always have at least VORBIS_COMMENT metadata block. */ + return DRFLAC_TRUE; +} +#endif + +drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ + drflac_bool32 relaxed; + drflac_uint8 id[4]; + + if (pInit == NULL || onRead == NULL || onSeek == NULL) { + return DRFLAC_FALSE; + } + + drflac_zero_memory(pInit, sizeof(*pInit)); + pInit->onRead = onRead; + pInit->onSeek = onSeek; + pInit->onMeta = onMeta; + pInit->container = container; + pInit->pUserData = pUserData; + pInit->pUserDataMD = pUserDataMD; + + pInit->bs.onRead = onRead; + pInit->bs.onSeek = onSeek; + pInit->bs.pUserData = pUserData; + drflac__reset_cache(&pInit->bs); + + + /* If the container is explicitly defined then we can try opening in relaxed mode. */ + relaxed = container != drflac_container_unknown; + + /* Skip over any ID3 tags. */ + for (;;) { + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_FALSE; /* Ran out of data. */ + } + pInit->runningFilePos += 4; + + if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') { + drflac_uint8 header[6]; + drflac_uint8 flags; + drflac_uint32 headerSize; + + if (onRead(pUserData, header, 6) != 6) { + return DRFLAC_FALSE; /* Ran out of data. */ + } + pInit->runningFilePos += 6; + + flags = header[1]; + + drflac_copy_memory(&headerSize, header+2, 4); + headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize)); + if (flags & 0x10) { + headerSize += 10; + } + + if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; /* Failed to seek past the tag. */ + } + pInit->runningFilePos += headerSize; + } else { + break; + } + } + + if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + + /* If we get here it means we likely don't have a header. Try opening in relaxed mode, if applicable. */ + if (relaxed) { + if (container == drflac_container_native) { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (container == drflac_container_ogg) { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + } + + /* Unsupported container. */ + return DRFLAC_FALSE; +} + +void drflac__init_from_info(drflac* pFlac, drflac_init_info* pInit) +{ + drflac_assert(pFlac != NULL); + drflac_assert(pInit != NULL); + + drflac_zero_memory(pFlac, sizeof(*pFlac)); + pFlac->bs = pInit->bs; + pFlac->onMeta = pInit->onMeta; + pFlac->pUserDataMD = pInit->pUserDataMD; + pFlac->maxBlockSize = pInit->maxBlockSize; + pFlac->sampleRate = pInit->sampleRate; + pFlac->channels = (drflac_uint8)pInit->channels; + pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample; + pFlac->totalSampleCount = pInit->totalSampleCount; + pFlac->totalPCMFrameCount = pInit->totalSampleCount / pFlac->channels; + pFlac->container = pInit->container; +} + +drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ + drflac_init_info init; + drflac_uint32 allocationSize; + drflac_uint32 wholeSIMDVectorCountPerChannel; + drflac_uint32 decodedSamplesAllocationSize; +#ifndef DR_FLAC_NO_OGG + drflac_uint32 oggbsAllocationSize; + drflac_oggbs oggbs; +#endif + drflac_uint64 firstFramePos; + drflac_uint64 seektablePos; + drflac_uint32 seektableSize; + drflac* pFlac; + +#ifndef DRFLAC_NO_CPUID + /* CPU support first. */ + drflac__init_cpu_caps(); +#endif + + if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) { + return NULL; + } + + /* + The size of the allocation for the drflac object needs to be large enough to fit the following: + 1) The main members of the drflac structure + 2) A block of memory large enough to store the decoded samples of the largest frame in the stream + 3) If the container is Ogg, a drflac_oggbs object + + The complicated part of the allocation is making sure there's enough room the decoded samples, taking into consideration + the different SIMD instruction sets. + */ + allocationSize = sizeof(drflac); + + /* + The allocation size for decoded frames depends on the number of 32-bit integers that fit inside the largest SIMD vector + we are supporting. + */ + if (((init.maxBlockSize+DRFLAC_LEADING_SAMPLES) % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) { + wholeSIMDVectorCountPerChannel = ((init.maxBlockSize+DRFLAC_LEADING_SAMPLES) / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))); + } else { + wholeSIMDVectorCountPerChannel = ((init.maxBlockSize+DRFLAC_LEADING_SAMPLES) / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1; + } + + decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels; + + allocationSize += decodedSamplesAllocationSize; + allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; /* Allocate extra bytes to ensure we have enough for alignment. */ + +#ifndef DR_FLAC_NO_OGG + /* There's additional data required for Ogg streams. */ + oggbsAllocationSize = 0; + if (init.container == drflac_container_ogg) { + oggbsAllocationSize = sizeof(drflac_oggbs); + allocationSize += oggbsAllocationSize; + } + + drflac_zero_memory(&oggbs, sizeof(oggbs)); + if (init.container == drflac_container_ogg) { + oggbs.onRead = onRead; + oggbs.onSeek = onSeek; + oggbs.pUserData = pUserData; + oggbs.currentBytePos = init.oggFirstBytePos; + oggbs.firstBytePos = init.oggFirstBytePos; + oggbs.serialNumber = init.oggSerial; + oggbs.bosPageHeader = init.oggBosHeader; + oggbs.bytesRemainingInPage = 0; + } +#endif + + /* + This part is a bit awkward. We need to load the seektable so that it can be referenced in-memory, but I want the drflac object to + consist of only a single heap allocation. To this, the size of the seek table needs to be known, which we determine when reading + and decoding the metadata. + */ + firstFramePos = 42; /* <-- We know we are at byte 42 at this point. */ + seektablePos = 0; + seektableSize = 0; + if (init.hasMetadataBlocks) { + drflac_read_proc onReadOverride = onRead; + drflac_seek_proc onSeekOverride = onSeek; + void* pUserDataOverride = pUserData; + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + onReadOverride = drflac__on_read_ogg; + onSeekOverride = drflac__on_seek_ogg; + pUserDataOverride = (void*)&oggbs; + } +#endif + + if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seektableSize)) { + return NULL; + } + + allocationSize += seektableSize; + } + + + pFlac = (drflac*)DRFLAC_MALLOC(allocationSize); + drflac__init_from_info(pFlac, &init); + pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE); + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + seektableSize); + *pInternalOggbs = oggbs; + + /* The Ogg bistream needs to be layered on top of the original bitstream. */ + pFlac->bs.onRead = drflac__on_read_ogg; + pFlac->bs.onSeek = drflac__on_seek_ogg; + pFlac->bs.pUserData = (void*)pInternalOggbs; + pFlac->_oggbs = (void*)pInternalOggbs; + } +#endif + + pFlac->firstFramePos = firstFramePos; + + /* NOTE: Seektables are not currently compatible with Ogg encapsulation (Ogg has its own accelerated seeking system). I may change this later, so I'm leaving this here for now. */ +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) + { + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + else +#endif + { + /* If we have a seektable we need to load it now, making sure we move back to where we were previously. */ + if (seektablePos != 0) { + pFlac->seekpointCount = seektableSize / sizeof(*pFlac->pSeekpoints); + pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize); + + /* Seek to the seektable, then just read directly into our seektable buffer. */ + if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) { + if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints, seektableSize) == seektableSize) { + /* Endian swap. */ + drflac_uint32 iSeekpoint; + for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + pFlac->pSeekpoints[iSeekpoint].firstSample = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstSample); + pFlac->pSeekpoints[iSeekpoint].frameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].frameOffset); + pFlac->pSeekpoints[iSeekpoint].sampleCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].sampleCount); + } + } else { + /* Failed to read the seektable. Pretend we don't have one. */ + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + + /* We need to seek back to where we were. If this fails it's a critical error. */ + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFramePos, drflac_seek_origin_start)) { + DRFLAC_FREE(pFlac); + return NULL; + } + } else { + /* Failed to seek to the seektable. Ominous sign, but for now we can just pretend we don't have one. */ + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + } + } + + + /* + If we get here, but don't have a STREAMINFO block, it means we've opened the stream in relaxed mode and need to decode + the first frame. + */ + if (!init.hasStreamInfoBlock) { + pFlac->currentFrame.header = init.firstFrameHeader; + do + { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + break; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFrame.header)) { + DRFLAC_FREE(pFlac); + return NULL; + } + continue; + } else { + DRFLAC_FREE(pFlac); + return NULL; + } + } + } while (1); + } + + return pFlac; +} + + + +#ifndef DR_FLAC_NO_STDIO +#include <stdio.h> + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_assert(offset >= 0); /* <-- Never seek backwards. */ + + return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + +static FILE* drflac__fopen(const char* filename) +{ + FILE* pFile; +#if defined(_MSC_VER) && _MSC_VER >= 1400 + if (fopen_s(&pFile, filename, "rb") != 0) { + return NULL; + } +#else + pFile = fopen(filename, "rb"); + if (pFile == NULL) { + return NULL; + } +#endif + + return pFile; +} + + +drflac* drflac_open_file(const char* filename) +{ + drflac* pFlac; + FILE* pFile; + + pFile = drflac__fopen(filename); + if (pFile == NULL) { + return NULL; + } + + pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile); + if (pFlac == NULL) { + fclose(pFile); + return NULL; + } + + return pFlac; +} + +drflac* drflac_open_file_with_metadata(const char* filename, drflac_meta_proc onMeta, void* pUserData) +{ + drflac* pFlac; + FILE* pFile; + + pFile = drflac__fopen(filename); + if (pFile == NULL) { + return NULL; + } + + pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData); + if (pFlac == NULL) { + fclose(pFile); + return pFlac; + } + + return pFlac; +} +#endif /* DR_FLAC_NO_STDIO */ + +static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + size_t bytesRemaining; + + drflac_assert(memoryStream != NULL); + drflac_assert(memoryStream->dataSize >= memoryStream->currentReadPos); + + bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + drflac_copy_memory(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); + memoryStream->currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + + drflac_assert(memoryStream != NULL); + drflac_assert(offset >= 0); /* <-- Never seek backwards. */ + + if (offset > (drflac_int64)memoryStream->dataSize) { + return DRFLAC_FALSE; + } + + if (origin == drflac_seek_origin_current) { + if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { + memoryStream->currentReadPos += offset; + } else { + return DRFLAC_FALSE; /* Trying to seek too far forward. */ + } + } else { + if ((drflac_uint32)offset <= memoryStream->dataSize) { + memoryStream->currentReadPos = offset; + } else { + return DRFLAC_FALSE; /* Trying to seek too far forward. */ + } + } + + return DRFLAC_TRUE; +} + +drflac* drflac_open_memory(const void* data, size_t dataSize) +{ + drflac__memory_stream memoryStream; + drflac* pFlac; + + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + /* This is an awful hack... */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + +drflac* drflac_open_memory_with_metadata(const void* data, size_t dataSize, drflac_meta_proc onMeta, void* pUserData) +{ + drflac__memory_stream memoryStream; + drflac* pFlac; + + memoryStream.data = (const unsigned char*)data; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + /* This is an awful hack... */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + + + +drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData); +} +drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData); +} + +drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData); +} +drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData); +} + +void drflac_close(drflac* pFlac) +{ + if (pFlac == NULL) { + return; + } + +#ifndef DR_FLAC_NO_STDIO + /* + If we opened the file with drflac_open_file() we will want to close the file handle. We can know whether or not drflac_open_file() + was used by looking at the callbacks. + */ + if (pFlac->bs.onRead == drflac__on_read_stdio) { + fclose((FILE*)pFlac->bs.pUserData); + } + +#ifndef DR_FLAC_NO_OGG + /* Need to clean up Ogg streams a bit differently due to the way the bit streaming is chained. */ + if (pFlac->container == drflac_container_ogg) { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + drflac_assert(pFlac->bs.onRead == drflac__on_read_ogg); + + if (oggbs->onRead == drflac__on_read_stdio) { + fclose((FILE*)oggbs->pUserData); + } + } +#endif +#endif + + DRFLAC_FREE(pFlac); +} + +drflac_uint64 drflac__read_s32__misaligned(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* bufferOut) +{ + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint64 samplesRead; + + /* We should never be calling this when the number of samples to read is >= the sample count. */ + drflac_assert(samplesToRead < channelCount); + drflac_assert(pFlac->currentFrame.samplesRemaining > 0 && samplesToRead <= pFlac->currentFrame.samplesRemaining); + + samplesRead = 0; + while (samplesToRead > 0) { + drflac_uint64 totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + drflac_uint64 samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + drflac_uint64 channelIndex = samplesReadFromFrameSoFar % channelCount; + drflac_uint64 nextSampleInFrame = samplesReadFromFrameSoFar / channelCount; + int decodedSample = 0; + + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + if (channelIndex == 0) { + decodedSample = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + } else { + int side = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + int left = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex - 1].wastedBitsPerSample); + decodedSample = left - side; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + if (channelIndex == 0) { + int side = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + int right = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 1].wastedBitsPerSample); + decodedSample = side + right; + } else { + decodedSample = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + int mid; + int side; + if (channelIndex == 0) { + mid = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + side = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 1].wastedBitsPerSample); + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid + side) >> 1; + } else { + mid = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex - 1].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex - 1].wastedBitsPerSample); + side = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + + mid = (((unsigned int)mid) << 1) | (side & 0x01); + decodedSample = (mid - side) >> 1; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + decodedSample = (int)((drflac_uint32)pFlac->currentFrame.subframes[channelIndex + 0].pDecodedSamples[nextSampleInFrame] << pFlac->currentFrame.subframes[channelIndex + 0].wastedBitsPerSample); + } break; + } + + decodedSample = (int)((drflac_uint32)decodedSample << (32 - pFlac->bitsPerSample)); + + if (bufferOut) { + *bufferOut++ = decodedSample; + } + + samplesRead += 1; + pFlac->currentFrame.samplesRemaining -= 1; + samplesToRead -= 1; + } + + return samplesRead; +} + +drflac_uint64 drflac_read_s32(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int32* bufferOut) +{ + drflac_uint64 samplesRead; + + /* Note that <bufferOut> is allowed to be null, in which case this will act like a seek. */ + if (pFlac == NULL || samplesToRead == 0) { + return 0; + } + + if (bufferOut == NULL) { + return drflac__seek_forward_by_samples(pFlac, samplesToRead); + } + + samplesRead = 0; + while (samplesToRead > 0) { + /* If we've run out of samples in this frame, go to the next. */ + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + /* Here is where we grab the samples and interleave them. */ + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint64 totalSamplesInFrame = pFlac->currentFrame.header.blockSize * channelCount; + drflac_uint64 samplesReadFromFrameSoFar = totalSamplesInFrame - pFlac->currentFrame.samplesRemaining; + drflac_uint64 misalignedSampleCount = samplesReadFromFrameSoFar % channelCount; + drflac_uint64 alignedSampleCountPerChannel; + drflac_uint64 firstAlignedSampleInFrame; + unsigned int unusedBitsPerSample; + drflac_uint64 alignedSamplesRead; + + if (misalignedSampleCount > 0) { + drflac_uint64 misalignedSamplesRead = drflac__read_s32__misaligned(pFlac, misalignedSampleCount, bufferOut); + samplesRead += misalignedSamplesRead; + samplesReadFromFrameSoFar += misalignedSamplesRead; + bufferOut += misalignedSamplesRead; + samplesToRead -= misalignedSamplesRead; + pFlac->currentSample += misalignedSamplesRead; + } + + + alignedSampleCountPerChannel = samplesToRead / channelCount; + if (alignedSampleCountPerChannel > pFlac->currentFrame.samplesRemaining / channelCount) { + alignedSampleCountPerChannel = pFlac->currentFrame.samplesRemaining / channelCount; + } + + firstAlignedSampleInFrame = samplesReadFromFrameSoFar / channelCount; + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_uint64 i; + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (i = 0; i < alignedSampleCountPerChannel; ++i) { + int left = (int)((drflac_uint32)pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample)); + int side = (int)((drflac_uint32)pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample)); + int right = left - side; + + bufferOut[i*2+0] = left; + bufferOut[i*2+1] = right; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_uint64 i; + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (i = 0; i < alignedSampleCountPerChannel; ++i) { + int side = (int)((drflac_uint32)pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample)); + int right = (int)((drflac_uint32)pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample)); + int left = right + side; + + bufferOut[i*2+0] = left; + bufferOut[i*2+1] = right; + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_uint64 i; + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (i = 0; i < alignedSampleCountPerChannel; ++i) { + int mid = (int)((drflac_uint32)pDecodedSamples0[i] << pFlac->currentFrame.subframes[0].wastedBitsPerSample); + int side = (int)((drflac_uint32)pDecodedSamples1[i] << pFlac->currentFrame.subframes[1].wastedBitsPerSample); + + mid = (((drflac_uint32)mid) << 1) | (side & 0x01); + + bufferOut[i*2+0] = (drflac_int32)((drflac_uint32)((mid + side) >> 1) << (unusedBitsPerSample)); + bufferOut[i*2+1] = (drflac_int32)((drflac_uint32)((mid - side) >> 1) << (unusedBitsPerSample)); + } + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + if (pFlac->currentFrame.header.channelAssignment == 1) /* 1 = Stereo */ + { + /* Stereo optimized inner loop unroll. */ + drflac_uint64 i; + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + firstAlignedSampleInFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + firstAlignedSampleInFrame; + + for (i = 0; i < alignedSampleCountPerChannel; ++i) { + bufferOut[i*2+0] = (drflac_int32)((drflac_uint32)pDecodedSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample)); + bufferOut[i*2+1] = (drflac_int32)((drflac_uint32)pDecodedSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample)); + } + } + else + { + /* Generic interleaving. */ + drflac_uint64 i; + for (i = 0; i < alignedSampleCountPerChannel; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + bufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFrame.subframes[j].pDecodedSamples[firstAlignedSampleInFrame + i]) << (unusedBitsPerSample + pFlac->currentFrame.subframes[j].wastedBitsPerSample)); + } + } + } + } break; + } + + alignedSamplesRead = alignedSampleCountPerChannel * channelCount; + samplesRead += alignedSamplesRead; + samplesReadFromFrameSoFar += alignedSamplesRead; + bufferOut += alignedSamplesRead; + samplesToRead -= alignedSamplesRead; + pFlac->currentSample += alignedSamplesRead; + pFlac->currentFrame.samplesRemaining -= (unsigned int)alignedSamplesRead; + + + /* At this point we may still have some excess samples left to read. */ + if (samplesToRead > 0 && pFlac->currentFrame.samplesRemaining > 0) { + drflac_uint64 excessSamplesRead = 0; + if (samplesToRead < pFlac->currentFrame.samplesRemaining) { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, samplesToRead, bufferOut); + } else { + excessSamplesRead = drflac__read_s32__misaligned(pFlac, pFlac->currentFrame.samplesRemaining, bufferOut); + } + + samplesRead += excessSamplesRead; + samplesReadFromFrameSoFar += excessSamplesRead; + bufferOut += excessSamplesRead; + samplesToRead -= excessSamplesRead; + pFlac->currentSample += excessSamplesRead; + } + } + } + + return samplesRead; +} + +drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut) +{ +#if defined(_MSC_VER) && !defined(__clang__) + #pragma warning(push) + #pragma warning(disable:4996) /* was declared deprecated */ +#elif defined(__GNUC__) || defined(__clang__) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#endif + return drflac_read_s32(pFlac, framesToRead*pFlac->channels, pBufferOut) / pFlac->channels; +#if defined(_MSC_VER) && !defined(__clang__) + #pragma warning(pop) +#elif defined(__GNUC__) || defined(__clang__) + #pragma GCC diagnostic pop +#endif +} + + +drflac_uint64 drflac_read_s16(drflac* pFlac, drflac_uint64 samplesToRead, drflac_int16* pBufferOut) +{ + /* This reads samples in 2 passes and can probably be optimized. */ + drflac_uint64 totalSamplesRead = 0; + +#if defined(_MSC_VER) && !defined(__clang__) + #pragma warning(push) + #pragma warning(disable:4996) /* was declared deprecated */ +#elif defined(__GNUC__) || defined(__clang__) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#endif + + while (samplesToRead > 0) { + drflac_uint64 i; + drflac_int32 samples32[4096]; + drflac_uint64 samplesJustRead = drflac_read_s32(pFlac, (samplesToRead > 4096) ? 4096 : samplesToRead, samples32); + if (samplesJustRead == 0) { + break; /* Reached the end. */ + } + + /* s32 -> s16 */ + for (i = 0; i < samplesJustRead; ++i) { + pBufferOut[i] = (drflac_int16)(samples32[i] >> 16); + } + + totalSamplesRead += samplesJustRead; + samplesToRead -= samplesJustRead; + pBufferOut += samplesJustRead; + } + +#if defined(_MSC_VER) && !defined(__clang__) + #pragma warning(pop) +#elif defined(__GNUC__) || defined(__clang__) + #pragma GCC diagnostic pop +#endif + + return totalSamplesRead; +} + +drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut) +{ + /* This reads samples in 2 passes and can probably be optimized. */ + drflac_uint64 totalPCMFramesRead = 0; + + while (framesToRead > 0) { + drflac_uint64 iFrame; + drflac_int32 samples32[4096]; + drflac_uint64 framesJustRead = drflac_read_pcm_frames_s32(pFlac, (framesToRead > 4096/pFlac->channels) ? 4096/pFlac->channels : framesToRead, samples32); + if (framesJustRead == 0) { + break; /* Reached the end. */ + } + + /* s32 -> s16 */ + for (iFrame = 0; iFrame < framesJustRead; ++iFrame) { + drflac_uint32 iChannel; + for (iChannel = 0; iChannel < pFlac->channels; ++iChannel) { + drflac_uint64 iSample = iFrame*pFlac->channels + iChannel; + pBufferOut[iSample] = (drflac_int16)(samples32[iSample] >> 16); + } + } + + totalPCMFramesRead += framesJustRead; + framesToRead -= framesJustRead; + pBufferOut += framesJustRead * pFlac->channels; + } + + return totalPCMFramesRead; +} + + +drflac_uint64 drflac_read_f32(drflac* pFlac, drflac_uint64 samplesToRead, float* pBufferOut) +{ + /* This reads samples in 2 passes and can probably be optimized. */ + drflac_uint64 totalSamplesRead = 0; + +#if defined(_MSC_VER) && !defined(__clang__) + #pragma warning(push) + #pragma warning(disable:4996) /* was declared deprecated */ +#elif defined(__GNUC__) || defined(__clang__) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wdeprecated-declarations" +#endif + + while (samplesToRead > 0) { + drflac_uint64 i; + drflac_int32 samples32[4096]; + drflac_uint64 samplesJustRead = drflac_read_s32(pFlac, (samplesToRead > 4096) ? 4096 : samplesToRead, samples32); + if (samplesJustRead == 0) { + break; /* Reached the end. */ + } + + /* s32 -> f32 */ + for (i = 0; i < samplesJustRead; ++i) { + pBufferOut[i] = (float)(samples32[i] / 2147483648.0); + } + + totalSamplesRead += samplesJustRead; + samplesToRead -= samplesJustRead; + pBufferOut += samplesJustRead; + } + +#if defined(_MSC_VER) && !defined(__clang__) + #pragma warning(pop) +#elif defined(__GNUC__) || defined(__clang__) + #pragma GCC diagnostic pop +#endif + + return totalSamplesRead; +} + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + int left = pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + int side = pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + int right = left - side; + + pOutputSamples[i*2+0] = (float)(left / 2147483648.0); + pOutputSamples[i*2+1] = (float)(right / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + + float factor = 1 / 2147483648.0; + + drflac_int32 shift0 = unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample; + drflac_int32 shift1 = unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_int32 left0 = pInputSamples0[i*4+0] << shift0; + drflac_int32 left1 = pInputSamples0[i*4+1] << shift0; + drflac_int32 left2 = pInputSamples0[i*4+2] << shift0; + drflac_int32 left3 = pInputSamples0[i*4+3] << shift0; + + drflac_int32 side0 = pInputSamples1[i*4+0] << shift1; + drflac_int32 side1 = pInputSamples1[i*4+1] << shift1; + drflac_int32 side2 = pInputSamples1[i*4+2] << shift1; + drflac_int32 side3 = pInputSamples1[i*4+3] << shift1; + + drflac_int32 right0 = left0 - side0; + drflac_int32 right1 = left1 - side1; + drflac_int32 right2 = left2 - side2; + drflac_int32 right3 = left3 - side3; + + pOutputSamples[i*8+0] = left0 * factor; + pOutputSamples[i*8+1] = right0 * factor; + pOutputSamples[i*8+2] = left1 * factor; + pOutputSamples[i*8+3] = right1 * factor; + pOutputSamples[i*8+4] = left2 * factor; + pOutputSamples[i*8+5] = right2 * factor; + pOutputSamples[i*8+6] = left3 * factor; + pOutputSamples[i*8+7] = right3 * factor; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int left = pInputSamples0[i] << shift0; + int side = pInputSamples1[i] << shift1; + int right = left - side; + + pOutputSamples[i*2+0] = (float)(left * factor); + pOutputSamples[i*2+1] = (float)(right * factor); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 frameCount4; + __m128 factor; + int shift0; + int shift1; + drflac_uint64 i; + + drflac_assert(pFlac->bitsPerSample <= 24); + + frameCount4 = frameCount >> 2; + + factor = _mm_set1_ps(1.0f / 8388608.0f); + shift0 = (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample) - 8; + shift1 = (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample) - 8; + + for (i = 0; i < frameCount4; ++i) { + __m128i inputSample0 = _mm_loadu_si128((const __m128i*)pInputSamples0 + i); + __m128i inputSample1 = _mm_loadu_si128((const __m128i*)pInputSamples1 + i); + + __m128i left = _mm_slli_epi32(inputSample0, shift0); + __m128i side = _mm_slli_epi32(inputSample1, shift1); + __m128i right = _mm_sub_epi32(left, side); + __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); + __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); + + pOutputSamples[i*8+0] = ((float*)&leftf)[0]; + pOutputSamples[i*8+1] = ((float*)&rightf)[0]; + pOutputSamples[i*8+2] = ((float*)&leftf)[1]; + pOutputSamples[i*8+3] = ((float*)&rightf)[1]; + pOutputSamples[i*8+4] = ((float*)&leftf)[2]; + pOutputSamples[i*8+5] = ((float*)&rightf)[2]; + pOutputSamples[i*8+6] = ((float*)&leftf)[3]; + pOutputSamples[i*8+7] = ((float*)&rightf)[3]; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int left = pInputSamples0[i] << shift0; + int side = pInputSamples1[i] << shift1; + int right = left - side; + + pOutputSamples[i*2+0] = (float)(left / 8388608.0f); + pOutputSamples[i*2+1] = (float)(right / 8388608.0f); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + int side = pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + int right = pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + int left = right + side; + + pOutputSamples[i*2+0] = (float)(left / 2147483648.0); + pOutputSamples[i*2+1] = (float)(right / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + + float factor = 1 / 2147483648.0; + + drflac_int32 shift0 = unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample; + drflac_int32 shift1 = unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample; + for (i = 0; i < frameCount4; ++i) { + drflac_int32 side0 = pInputSamples0[i*4+0] << shift0; + drflac_int32 side1 = pInputSamples0[i*4+1] << shift0; + drflac_int32 side2 = pInputSamples0[i*4+2] << shift0; + drflac_int32 side3 = pInputSamples0[i*4+3] << shift0; + + drflac_int32 right0 = pInputSamples1[i*4+0] << shift1; + drflac_int32 right1 = pInputSamples1[i*4+1] << shift1; + drflac_int32 right2 = pInputSamples1[i*4+2] << shift1; + drflac_int32 right3 = pInputSamples1[i*4+3] << shift1; + + drflac_int32 left0 = right0 + side0; + drflac_int32 left1 = right1 + side1; + drflac_int32 left2 = right2 + side2; + drflac_int32 left3 = right3 + side3; + + pOutputSamples[i*8+0] = left0 * factor; + pOutputSamples[i*8+1] = right0 * factor; + pOutputSamples[i*8+2] = left1 * factor; + pOutputSamples[i*8+3] = right1 * factor; + pOutputSamples[i*8+4] = left2 * factor; + pOutputSamples[i*8+5] = right2 * factor; + pOutputSamples[i*8+6] = left3 * factor; + pOutputSamples[i*8+7] = right3 * factor; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int side = pInputSamples0[i] << shift0; + int right = pInputSamples1[i] << shift1; + int left = right + side; + + pOutputSamples[i*2+0] = (float)(left * factor); + pOutputSamples[i*2+1] = (float)(right * factor); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 frameCount4; + __m128 factor; + int shift0; + int shift1; + drflac_uint64 i; + + drflac_assert(pFlac->bitsPerSample <= 24); + + frameCount4 = frameCount >> 2; + + factor = _mm_set1_ps(1.0f / 8388608.0f); + shift0 = (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample) - 8; + shift1 = (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample) - 8; + + for (i = 0; i < frameCount4; ++i) { + __m128i inputSample0 = _mm_loadu_si128((const __m128i*)pInputSamples0 + i); + __m128i inputSample1 = _mm_loadu_si128((const __m128i*)pInputSamples1 + i); + + __m128i side = _mm_slli_epi32(inputSample0, shift0); + __m128i right = _mm_slli_epi32(inputSample1, shift1); + __m128i left = _mm_add_epi32(right, side); + __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); + __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); + + pOutputSamples[i*8+0] = ((float*)&leftf)[0]; + pOutputSamples[i*8+1] = ((float*)&rightf)[0]; + pOutputSamples[i*8+2] = ((float*)&leftf)[1]; + pOutputSamples[i*8+3] = ((float*)&rightf)[1]; + pOutputSamples[i*8+4] = ((float*)&leftf)[2]; + pOutputSamples[i*8+5] = ((float*)&rightf)[2]; + pOutputSamples[i*8+6] = ((float*)&leftf)[3]; + pOutputSamples[i*8+7] = ((float*)&rightf)[3]; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int side = pInputSamples0[i] << shift0; + int right = pInputSamples1[i] << shift1; + int left = right + side; + + pOutputSamples[i*2+0] = (float)(left / 8388608.0f); + pOutputSamples[i*2+1] = (float)(right / 8388608.0f); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + int mid = pInputSamples0[i] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int side = pInputSamples1[i] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid = (((drflac_uint32)mid) << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (float)((((mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); + pOutputSamples[i*2+1] = (float)((((mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + + float factor = 1 / 2147483648.0; + + int shift = unusedBitsPerSample; + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + int temp0L; + int temp1L; + int temp2L; + int temp3L; + int temp0R; + int temp1R; + int temp2R; + int temp3R; + + int mid0 = pInputSamples0[i*4+0] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int mid1 = pInputSamples0[i*4+1] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int mid2 = pInputSamples0[i*4+2] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int mid3 = pInputSamples0[i*4+3] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + + int side0 = pInputSamples1[i*4+0] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + int side1 = pInputSamples1[i*4+1] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + int side2 = pInputSamples1[i*4+2] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + int side3 = pInputSamples1[i*4+3] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid0 = (((drflac_uint32)mid0) << 1) | (side0 & 0x01); + mid1 = (((drflac_uint32)mid1) << 1) | (side1 & 0x01); + mid2 = (((drflac_uint32)mid2) << 1) | (side2 & 0x01); + mid3 = (((drflac_uint32)mid3) << 1) | (side3 & 0x01); + + temp0L = ((mid0 + side0) << shift); + temp1L = ((mid1 + side1) << shift); + temp2L = ((mid2 + side2) << shift); + temp3L = ((mid3 + side3) << shift); + + temp0R = ((mid0 - side0) << shift); + temp1R = ((mid1 - side1) << shift); + temp2R = ((mid2 - side2) << shift); + temp3R = ((mid3 - side3) << shift); + + pOutputSamples[i*8+0] = (float)(temp0L * factor); + pOutputSamples[i*8+1] = (float)(temp0R * factor); + pOutputSamples[i*8+2] = (float)(temp1L * factor); + pOutputSamples[i*8+3] = (float)(temp1R * factor); + pOutputSamples[i*8+4] = (float)(temp2L * factor); + pOutputSamples[i*8+5] = (float)(temp2R * factor); + pOutputSamples[i*8+6] = (float)(temp3L * factor); + pOutputSamples[i*8+7] = (float)(temp3R * factor); + } + } else { + for (i = 0; i < frameCount4; ++i) { + int temp0L; + int temp1L; + int temp2L; + int temp3L; + int temp0R; + int temp1R; + int temp2R; + int temp3R; + + int mid0 = pInputSamples0[i*4+0] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int mid1 = pInputSamples0[i*4+1] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int mid2 = pInputSamples0[i*4+2] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int mid3 = pInputSamples0[i*4+3] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + + int side0 = pInputSamples1[i*4+0] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + int side1 = pInputSamples1[i*4+1] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + int side2 = pInputSamples1[i*4+2] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + int side3 = pInputSamples1[i*4+3] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid0 = (((drflac_uint32)mid0) << 1) | (side0 & 0x01); + mid1 = (((drflac_uint32)mid1) << 1) | (side1 & 0x01); + mid2 = (((drflac_uint32)mid2) << 1) | (side2 & 0x01); + mid3 = (((drflac_uint32)mid3) << 1) | (side3 & 0x01); + + temp0L = ((mid0 + side0) >> 1); + temp1L = ((mid1 + side1) >> 1); + temp2L = ((mid2 + side2) >> 1); + temp3L = ((mid3 + side3) >> 1); + + temp0R = ((mid0 - side0) >> 1); + temp1R = ((mid1 - side1) >> 1); + temp2R = ((mid2 - side2) >> 1); + temp3R = ((mid3 - side3) >> 1); + + pOutputSamples[i*8+0] = (float)(temp0L * factor); + pOutputSamples[i*8+1] = (float)(temp0R * factor); + pOutputSamples[i*8+2] = (float)(temp1L * factor); + pOutputSamples[i*8+3] = (float)(temp1R * factor); + pOutputSamples[i*8+4] = (float)(temp2L * factor); + pOutputSamples[i*8+5] = (float)(temp2R * factor); + pOutputSamples[i*8+6] = (float)(temp3L * factor); + pOutputSamples[i*8+7] = (float)(temp3R * factor); + } + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int mid = pInputSamples0[i] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int side = pInputSamples1[i] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid = (((drflac_uint32)mid) << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (float)((((mid + side) >> 1) << unusedBitsPerSample) * factor); + pOutputSamples[i*2+1] = (float)((((mid - side) >> 1) << unusedBitsPerSample) * factor); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4; + float factor; + int shift; + __m128 factor128; + + drflac_assert(pFlac->bitsPerSample <= 24); + + frameCount4 = frameCount >> 2; + + factor = 1.0f / 8388608.0f; + factor128 = _mm_set1_ps(1.0f / 8388608.0f); + + shift = unusedBitsPerSample - 8; + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i tempL; + __m128i tempR; + __m128 leftf; + __m128 rightf; + + __m128i inputSample0 = _mm_loadu_si128((const __m128i*)pInputSamples0 + i); + __m128i inputSample1 = _mm_loadu_si128((const __m128i*)pInputSamples1 + i); + + __m128i mid = _mm_slli_epi32(inputSample0, pFlac->currentFrame.subframes[0].wastedBitsPerSample); + __m128i side = _mm_slli_epi32(inputSample1, pFlac->currentFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + tempL = _mm_add_epi32(mid, side); + tempR = _mm_sub_epi32(mid, side); + + /* Signed bit shift. */ + tempL = _mm_or_si128(_mm_srli_epi32(tempL, 1), _mm_and_si128(tempL, _mm_set1_epi32(0x80000000))); + tempR = _mm_or_si128(_mm_srli_epi32(tempR, 1), _mm_and_si128(tempR, _mm_set1_epi32(0x80000000))); + + leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); + + pOutputSamples[i*8+0] = ((float*)&leftf)[0]; + pOutputSamples[i*8+1] = ((float*)&rightf)[0]; + pOutputSamples[i*8+2] = ((float*)&leftf)[1]; + pOutputSamples[i*8+3] = ((float*)&rightf)[1]; + pOutputSamples[i*8+4] = ((float*)&leftf)[2]; + pOutputSamples[i*8+5] = ((float*)&rightf)[2]; + pOutputSamples[i*8+6] = ((float*)&leftf)[3]; + pOutputSamples[i*8+7] = ((float*)&rightf)[3]; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int mid = pInputSamples0[i] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int side = pInputSamples1[i] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid = (((drflac_uint32)mid) << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (float)(((mid + side) >> 1) * factor); + pOutputSamples[i*2+1] = (float)(((mid - side) >> 1) * factor); + } + } else { + for (i = 0; i < frameCount4; ++i) { + __m128i inputSample0; + __m128i inputSample1; + __m128i mid; + __m128i side; + __m128i tempL; + __m128i tempR; + __m128 leftf; + __m128 rightf; + + inputSample0 = _mm_loadu_si128((const __m128i*)pInputSamples0 + i); + inputSample1 = _mm_loadu_si128((const __m128i*)pInputSamples1 + i); + + mid = _mm_slli_epi32(inputSample0, pFlac->currentFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(inputSample1, pFlac->currentFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + tempL = _mm_slli_epi32(_mm_srli_epi32(_mm_add_epi32(mid, side), 1), shift); + tempR = _mm_slli_epi32(_mm_srli_epi32(_mm_sub_epi32(mid, side), 1), shift); + + leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); + + pOutputSamples[i*8+0] = ((float*)&leftf)[0]; + pOutputSamples[i*8+1] = ((float*)&rightf)[0]; + pOutputSamples[i*8+2] = ((float*)&leftf)[1]; + pOutputSamples[i*8+3] = ((float*)&rightf)[1]; + pOutputSamples[i*8+4] = ((float*)&leftf)[2]; + pOutputSamples[i*8+5] = ((float*)&rightf)[2]; + pOutputSamples[i*8+6] = ((float*)&leftf)[3]; + pOutputSamples[i*8+7] = ((float*)&rightf)[3]; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + int mid = pInputSamples0[i] << pFlac->currentFrame.subframes[0].wastedBitsPerSample; + int side = pInputSamples1[i] << pFlac->currentFrame.subframes[1].wastedBitsPerSample; + + mid = (((drflac_uint32)mid) << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (float)((((mid + side) >> 1) << shift) * factor); + pOutputSamples[i*2+1] = (float)((((mid - side) >> 1) << shift) * factor); + } + } +} +#endif + + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (float)((pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0); + pOutputSamples[i*2+1] = (float)((pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + + float factor = 1 / 2147483648.0; + + int shift0 = (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample); + int shift1 = (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample); + + for (i = 0; i < frameCount4; ++i) { + int tempL0 = pInputSamples0[i*4+0] << shift0; + int tempL1 = pInputSamples0[i*4+1] << shift0; + int tempL2 = pInputSamples0[i*4+2] << shift0; + int tempL3 = pInputSamples0[i*4+3] << shift0; + + int tempR0 = pInputSamples1[i*4+0] << shift1; + int tempR1 = pInputSamples1[i*4+1] << shift1; + int tempR2 = pInputSamples1[i*4+2] << shift1; + int tempR3 = pInputSamples1[i*4+3] << shift1; + + pOutputSamples[i*8+0] = (float)(tempL0 * factor); + pOutputSamples[i*8+1] = (float)(tempR0 * factor); + pOutputSamples[i*8+2] = (float)(tempL1 * factor); + pOutputSamples[i*8+3] = (float)(tempR1 * factor); + pOutputSamples[i*8+4] = (float)(tempL2 * factor); + pOutputSamples[i*8+5] = (float)(tempR2 * factor); + pOutputSamples[i*8+6] = (float)(tempL3 * factor); + pOutputSamples[i*8+7] = (float)(tempR3 * factor); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (float)((pInputSamples0[i] << shift0) * factor); + pOutputSamples[i*2+1] = (float)((pInputSamples1[i] << shift1) * factor); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + + float factor = 1.0f / 8388608.0f; + __m128 factor128 = _mm_set1_ps(1.0f / 8388608.0f); + + int shift0 = (unusedBitsPerSample + pFlac->currentFrame.subframes[0].wastedBitsPerSample) - 8; + int shift1 = (unusedBitsPerSample + pFlac->currentFrame.subframes[1].wastedBitsPerSample) - 8; + + for (i = 0; i < frameCount4; ++i) { + __m128i inputSample0 = _mm_loadu_si128((const __m128i*)pInputSamples0 + i); + __m128i inputSample1 = _mm_loadu_si128((const __m128i*)pInputSamples1 + i); + + __m128i i32L = _mm_slli_epi32(inputSample0, shift0); + __m128i i32R = _mm_slli_epi32(inputSample1, shift1); + + __m128 f32L = _mm_mul_ps(_mm_cvtepi32_ps(i32L), factor128); + __m128 f32R = _mm_mul_ps(_mm_cvtepi32_ps(i32R), factor128); + + pOutputSamples[i*8+0] = ((float*)&f32L)[0]; + pOutputSamples[i*8+1] = ((float*)&f32R)[0]; + pOutputSamples[i*8+2] = ((float*)&f32L)[1]; + pOutputSamples[i*8+3] = ((float*)&f32R)[1]; + pOutputSamples[i*8+4] = ((float*)&f32L)[2]; + pOutputSamples[i*8+5] = ((float*)&f32R)[2]; + pOutputSamples[i*8+6] = ((float*)&f32L)[3]; + pOutputSamples[i*8+7] = ((float*)&f32R)[3]; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (float)((pInputSamples0[i] << shift0) * factor); + pOutputSamples[i*2+1] = (float)((pInputSamples1[i] << shift1) * factor); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_int32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + +drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut) +{ + drflac_uint64 framesRead; + + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + + framesRead = 0; + while (framesToRead > 0) { + /* If we've run out of samples in this frame, go to the next. */ + if (pFlac->currentFrame.samplesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint64 totalFramesInPacket = pFlac->currentFrame.header.blockSize; + drflac_uint64 framesReadFromPacketSoFar = totalFramesInPacket - (pFlac->currentFrame.samplesRemaining/channelCount); + drflac_uint64 iFirstPCMFrame = framesReadFromPacketSoFar; + drflac_int32 unusedBitsPerSample = 32 - pFlac->bitsPerSample; + drflac_uint64 frameCountThisIteration = framesToRead; + drflac_uint64 samplesReadThisIteration; + + if (frameCountThisIteration > pFlac->currentFrame.samplesRemaining / channelCount) { + frameCountThisIteration = pFlac->currentFrame.samplesRemaining / channelCount; + } + + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFrame.subframes[0].pDecodedSamples + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFrame.subframes[1].pDecodedSamples + iFirstPCMFrame; + + switch (pFlac->currentFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + /* Generic interleaving. */ + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + pBufferOut[(i*channelCount)+j] = (float)(((pFlac->currentFrame.subframes[j].pDecodedSamples[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFrame.subframes[j].wastedBitsPerSample)) / 2147483648.0); + } + } + } + + samplesReadThisIteration = frameCountThisIteration * channelCount; + framesRead += frameCountThisIteration; + framesReadFromPacketSoFar += frameCountThisIteration; + pBufferOut += samplesReadThisIteration; + framesToRead -= frameCountThisIteration; + pFlac->currentSample += samplesReadThisIteration; + pFlac->currentFrame.samplesRemaining -= (unsigned int)samplesReadThisIteration; + } + } + + return framesRead; +} + +drflac_bool32 drflac_seek_to_sample(drflac* pFlac, drflac_uint64 sampleIndex) +{ + if (pFlac == NULL) { + return DRFLAC_FALSE; + } + + /* + If we don't know where the first frame begins then we can't seek. This will happen when the STREAMINFO block was not present + when the decoder was opened. + */ + if (pFlac->firstFramePos == 0) { + return DRFLAC_FALSE; + } + + if (sampleIndex == 0) { + pFlac->currentSample = 0; + return drflac__seek_to_first_frame(pFlac); + } else { + drflac_bool32 wasSuccessful = DRFLAC_FALSE; + + /* Clamp the sample to the end. */ + if (sampleIndex >= pFlac->totalSampleCount) { + sampleIndex = pFlac->totalSampleCount - 1; + } + + /* If the target sample and the current sample are in the same frame we just move the position forward. */ + if (sampleIndex > pFlac->currentSample) { + /* Forward. */ + drflac_uint32 offset = (drflac_uint32)(sampleIndex - pFlac->currentSample); + if (pFlac->currentFrame.samplesRemaining > offset) { + pFlac->currentFrame.samplesRemaining -= offset; + pFlac->currentSample = sampleIndex; + return DRFLAC_TRUE; + } + } else { + /* Backward. */ + drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentSample - sampleIndex); + drflac_uint32 currentFrameSampleCount = pFlac->currentFrame.header.blockSize * drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint32 currentFrameSamplesConsumed = (drflac_uint32)(currentFrameSampleCount - pFlac->currentFrame.samplesRemaining); + if (currentFrameSamplesConsumed > offsetAbs) { + pFlac->currentFrame.samplesRemaining += offsetAbs; + pFlac->currentSample = sampleIndex; + return DRFLAC_TRUE; + } + } + + /* + Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so + we'll instead use Ogg's natural seeking facility. + */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + wasSuccessful = drflac_ogg__seek_to_sample(pFlac, sampleIndex); + } + else +#endif + { + /* First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. */ + wasSuccessful = drflac__seek_to_sample__seek_table(pFlac, sampleIndex); + if (!wasSuccessful) { + wasSuccessful = drflac__seek_to_sample__brute_force(pFlac, sampleIndex); + } + } + + pFlac->currentSample = sampleIndex; + return wasSuccessful; + } +} + +drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + if (pFlac == NULL) { + return DRFLAC_FALSE; + } + + /* + If we don't know where the first frame begins then we can't seek. This will happen when the STREAMINFO block was not present + when the decoder was opened. + */ + if (pFlac->firstFramePos == 0) { + return DRFLAC_FALSE; + } + + if (pcmFrameIndex == 0) { + pFlac->currentSample = 0; + return drflac__seek_to_first_frame(pFlac); + } else { + drflac_bool32 wasSuccessful = DRFLAC_FALSE; + + /* Clamp the sample to the end. */ + if (pcmFrameIndex >= pFlac->totalPCMFrameCount) { + pcmFrameIndex = pFlac->totalPCMFrameCount - 1; + } + + /* If the target sample and the current sample are in the same frame we just move the position forward. */ + if (pcmFrameIndex*pFlac->channels > pFlac->currentSample) { + /* Forward. */ + drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex*pFlac->channels - pFlac->currentSample); + if (pFlac->currentFrame.samplesRemaining > offset) { + pFlac->currentFrame.samplesRemaining -= offset; + pFlac->currentSample = pcmFrameIndex*pFlac->channels; + return DRFLAC_TRUE; + } + } else { + /* Backward. */ + drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentSample - pcmFrameIndex*pFlac->channels); + drflac_uint32 currentFrameSampleCount = pFlac->currentFrame.header.blockSize * drflac__get_channel_count_from_channel_assignment(pFlac->currentFrame.header.channelAssignment); + drflac_uint32 currentFrameSamplesConsumed = (drflac_uint32)(currentFrameSampleCount - pFlac->currentFrame.samplesRemaining); + if (currentFrameSamplesConsumed > offsetAbs) { + pFlac->currentFrame.samplesRemaining += offsetAbs; + pFlac->currentSample = pcmFrameIndex*pFlac->channels; + return DRFLAC_TRUE; + } + } + + /* + Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so + we'll instead use Ogg's natural seeking facility. + */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + wasSuccessful = drflac_ogg__seek_to_sample(pFlac, pcmFrameIndex*pFlac->channels); + } + else +#endif + { + /* First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. */ + wasSuccessful = drflac__seek_to_sample__seek_table(pFlac, pcmFrameIndex*pFlac->channels); + if (!wasSuccessful) { + wasSuccessful = drflac__seek_to_sample__brute_force(pFlac, pcmFrameIndex*pFlac->channels); + } + } + + pFlac->currentSample = pcmFrameIndex*pFlac->channels; + return wasSuccessful; + } +} + + + +/* High Level APIs */ + +#if defined(SIZE_MAX) + #define DRFLAC_SIZE_MAX SIZE_MAX +#else + #if defined(DRFLAC_64BIT) + #define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRFLAC_SIZE_MAX 0xFFFFFFFF + #endif +#endif + + +/* Using a macro as the definition of the drflac__full_decode_and_close_*() API family. Sue me. */ +#define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \ +static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\ +{ \ + type* pSampleData = NULL; \ + drflac_uint64 totalPCMFrameCount; \ + \ + drflac_assert(pFlac != NULL); \ + \ + totalPCMFrameCount = pFlac->totalPCMFrameCount; \ + \ + if (totalPCMFrameCount == 0) { \ + type buffer[4096]; \ + drflac_uint64 pcmFramesRead; \ + size_t sampleDataBufferSize = sizeof(buffer); \ + \ + pSampleData = (type*)DRFLAC_MALLOC(sampleDataBufferSize); \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \ + if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \ + type* pNewSampleData; \ + \ + sampleDataBufferSize *= 2; \ + pNewSampleData = (type*)DRFLAC_REALLOC(pSampleData, sampleDataBufferSize); \ + if (pNewSampleData == NULL) { \ + DRFLAC_FREE(pSampleData); \ + goto on_error; \ + } \ + \ + pSampleData = pNewSampleData; \ + } \ + \ + drflac_copy_memory(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \ + totalPCMFrameCount += pcmFramesRead; \ + } \ + \ + /* At this point everything should be decoded, but we just want to fill the unused part buffer with silence - need to \ + protect those ears from random noise! */ \ + drflac_zero_memory(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \ + } else { \ + drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \ + if (dataSize > DRFLAC_SIZE_MAX) { \ + goto on_error; /* The decoded data is too big. */ \ + } \ + \ + pSampleData = (type*)DRFLAC_MALLOC((size_t)dataSize); /* <-- Safe cast as per the check above. */ \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \ + } \ + \ + if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \ + if (channelsOut) *channelsOut = pFlac->channels; \ + if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \ + \ + drflac_close(pFlac); \ + return pSampleData; \ + \ +on_error: \ + drflac_close(pFlac); \ + return NULL; \ +} + +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32) +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16) +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float) + +drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut) +{ + drflac* pFlac; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + + pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} + +drflac_int32* drflac_open_and_decode_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int32* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_and_read_pcm_frames_s32(onRead, onSeek, pUserData, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + + +drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut) +{ + drflac* pFlac; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + + pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} + +drflac_int16* drflac_open_and_decode_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int16* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_and_read_pcm_frames_s16(onRead, onSeek, pUserData, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + +float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut) +{ + drflac* pFlac; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + + pFlac = drflac_open(onRead, onSeek, pUserData); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} + +float* drflac_open_and_decode_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + float* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_and_read_pcm_frames_f32(onRead, onSeek, pUserData, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + +#ifndef DR_FLAC_NO_STDIO +drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +drflac_int32* drflac_open_and_decode_file_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int32* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_file_and_read_pcm_frames_s32(filename, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + +drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +drflac_int16* drflac_open_and_decode_file_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int16* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_file_and_read_pcm_frames_s16(filename, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + +float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_file(filename); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +float* drflac_open_and_decode_file_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + float* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_file_and_read_pcm_frames_f32(filename, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} +#endif + +drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +drflac_int32* drflac_open_and_decode_memory_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int32* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_memory_and_read_pcm_frames_s32(data, dataSize, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + +drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +drflac_int16* drflac_open_and_decode_memory_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int16* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_memory_and_read_pcm_frames_s16(data, dataSize, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + +float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_memory(data, dataSize); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +float* drflac_open_and_decode_memory_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalSampleCountOut) +{ + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + float* pResult; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalSampleCountOut) { + *totalSampleCountOut = 0; + } + + pResult = drflac_open_memory_and_read_pcm_frames_f32(data, dataSize, &channels, &sampleRate, &totalPCMFrameCount); + if (pResult == NULL) { + return NULL; + } + + if (channelsOut) { + *channelsOut = channels; + } + if (sampleRateOut) { + *sampleRateOut = sampleRate; + } + if (totalSampleCountOut) { + *totalSampleCountOut = totalPCMFrameCount * channels; + } + + return pResult; +} + + +void drflac_free(void* pSampleDataReturnedByOpenAndDecode) +{ + DRFLAC_FREE(pSampleDataReturnedByOpenAndDecode); +} + + + + +void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = commentCount; + pIter->pRunningData = (const char*)pComments; +} + +const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut) +{ + drflac_int32 length; + const char* pComment; + + /* Safety. */ + if (pCommentLengthOut) { + *pCommentLengthOut = 0; + } + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return NULL; + } + + length = drflac__le2host_32(*(const drflac_uint32*)pIter->pRunningData); + pIter->pRunningData += 4; + + pComment = pIter->pRunningData; + pIter->pRunningData += length; + pIter->countRemaining -= 1; + + if (pCommentLengthOut) { + *pCommentLengthOut = length; + } + + return pComment; +} + + + + +void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = trackCount; + pIter->pRunningData = (const char*)pTrackData; +} + +drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack) +{ + drflac_cuesheet_track cuesheetTrack; + const char* pRunningData; + drflac_uint64 offsetHi; + drflac_uint64 offsetLo; + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return DRFLAC_FALSE; + } + + pRunningData = pIter->pRunningData; + + offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + cuesheetTrack.offset = offsetLo | (offsetHi << 32); + cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1; + drflac_copy_memory(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12; + cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0; + cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14; + cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1; + cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index); + + pIter->pRunningData = pRunningData; + pIter->countRemaining -= 1; + + if (pCuesheetTrack) { + *pCuesheetTrack = cuesheetTrack; + } + + return DRFLAC_TRUE; +} + +#if defined(__GNUC__) + #pragma GCC diagnostic pop +#endif +#endif /* DR_FLAC_IMPLEMENTATION */ + + +/* +REVISION HISTORY +================ +v0.11.10 - 2019-06-26 + - Fix a compiler error. + +v0.11.9 - 2019-06-16 + - Silence some ThreadSanitizer warnings. + +v0.11.8 - 2019-05-21 + - Fix warnings. + +v0.11.7 - 2019-05-06 + - C89 fixes. + +v0.11.6 - 2019-05-05 + - Add support for C89. + - Fix a compiler warning when CRC is disabled. + - Change license to choice of public domain or MIT-0. + +v0.11.5 - 2019-04-19 + - Fix a compiler error with GCC. + +v0.11.4 - 2019-04-17 + - Fix some warnings with GCC when compiling with -std=c99. + +v0.11.3 - 2019-04-07 + - Silence warnings with GCC. + +v0.11.2 - 2019-03-10 + - Fix a warning. + +v0.11.1 - 2019-02-17 + - Fix a potential bug with seeking. + +v0.11.0 - 2018-12-16 + - API CHANGE: Deprecated drflac_read_s32(), drflac_read_s16() and drflac_read_f32() and replaced them with + drflac_read_pcm_frames_s32(), drflac_read_pcm_frames_s16() and drflac_read_pcm_frames_f32(). The new APIs take + and return PCM frame counts instead of sample counts. To upgrade you will need to change the input count by + dividing it by the channel count, and then do the same with the return value. + - API_CHANGE: Deprecated drflac_seek_to_sample() and replaced with drflac_seek_to_pcm_frame(). Same rules as + the changes to drflac_read_*() apply. + - API CHANGE: Deprecated drflac_open_and_decode_*() and replaced with drflac_open_*_and_read_*(). Same rules as + the changes to drflac_read_*() apply. + - Optimizations. + +v0.10.0 - 2018-09-11 + - Remove the DR_FLAC_NO_WIN32_IO option and the Win32 file IO functionality. If you need to use Win32 file IO you + need to do it yourself via the callback API. + - Fix the clang build. + - Fix undefined behavior. + - Fix errors with CUESHEET metdata blocks. + - Add an API for iterating over each cuesheet track in the CUESHEET metadata block. This works the same way as the + Vorbis comment API. + - Other miscellaneous bug fixes, mostly relating to invalid FLAC streams. + - Minor optimizations. + +v0.9.11 - 2018-08-29 + - Fix a bug with sample reconstruction. + +v0.9.10 - 2018-08-07 + - Improve 64-bit detection. + +v0.9.9 - 2018-08-05 + - Fix C++ build on older versions of GCC. + +v0.9.8 - 2018-07-24 + - Fix compilation errors. + +v0.9.7 - 2018-07-05 + - Fix a warning. + +v0.9.6 - 2018-06-29 + - Fix some typos. + +v0.9.5 - 2018-06-23 + - Fix some warnings. + +v0.9.4 - 2018-06-14 + - Optimizations to seeking. + - Clean up. + +v0.9.3 - 2018-05-22 + - Bug fix. + +v0.9.2 - 2018-05-12 + - Fix a compilation error due to a missing break statement. + +v0.9.1 - 2018-04-29 + - Fix compilation error with Clang. + +v0.9 - 2018-04-24 + - Fix Clang build. + - Start using major.minor.revision versioning. + +v0.8g - 2018-04-19 + - Fix build on non-x86/x64 architectures. + +v0.8f - 2018-02-02 + - Stop pretending to support changing rate/channels mid stream. + +v0.8e - 2018-02-01 + - Fix a crash when the block size of a frame is larger than the maximum block size defined by the FLAC stream. + - Fix a crash the the Rice partition order is invalid. + +v0.8d - 2017-09-22 + - Add support for decoding streams with ID3 tags. ID3 tags are just skipped. + +v0.8c - 2017-09-07 + - Fix warning on non-x86/x64 architectures. + +v0.8b - 2017-08-19 + - Fix build on non-x86/x64 architectures. + +v0.8a - 2017-08-13 + - A small optimization for the Clang build. + +v0.8 - 2017-08-12 + - API CHANGE: Rename dr_* types to drflac_*. + - Optimizations. This brings dr_flac back to about the same class of efficiency as the reference implementation. + - Add support for custom implementations of malloc(), realloc(), etc. + - Add CRC checking to Ogg encapsulated streams. + - Fix VC++ 6 build. This is only for the C++ compiler. The C compiler is not currently supported. + - Bug fixes. + +v0.7 - 2017-07-23 + - Add support for opening a stream without a header block. To do this, use drflac_open_relaxed() / drflac_open_with_metadata_relaxed(). + +v0.6 - 2017-07-22 + - Add support for recovering from invalid frames. With this change, dr_flac will simply skip over invalid frames as if they + never existed. Frames are checked against their sync code, the CRC-8 of the frame header and the CRC-16 of the whole frame. + +v0.5 - 2017-07-16 + - Fix typos. + - Change drflac_bool* types to unsigned. + - Add CRC checking. This makes dr_flac slower, but can be disabled with #define DR_FLAC_NO_CRC. + +v0.4f - 2017-03-10 + - Fix a couple of bugs with the bitstreaming code. + +v0.4e - 2017-02-17 + - Fix some warnings. + +v0.4d - 2016-12-26 + - Add support for 32-bit floating-point PCM decoding. + - Use drflac_int* and drflac_uint* sized types to improve compiler support. + - Minor improvements to documentation. + +v0.4c - 2016-12-26 + - Add support for signed 16-bit integer PCM decoding. + +v0.4b - 2016-10-23 + - A minor change to drflac_bool8 and drflac_bool32 types. + +v0.4a - 2016-10-11 + - Rename drBool32 to drflac_bool32 for styling consistency. + +v0.4 - 2016-09-29 + - API/ABI CHANGE: Use fixed size 32-bit booleans instead of the built-in bool type. + - API CHANGE: Rename drflac_open_and_decode*() to drflac_open_and_decode*_s32(). + - API CHANGE: Swap the order of "channels" and "sampleRate" parameters in drflac_open_and_decode*(). Rationale for this is to + keep it consistent with drflac_audio. + +v0.3f - 2016-09-21 + - Fix a warning with GCC. + +v0.3e - 2016-09-18 + - Fixed a bug where GCC 4.3+ was not getting properly identified. + - Fixed a few typos. + - Changed date formats to ISO 8601 (YYYY-MM-DD). + +v0.3d - 2016-06-11 + - Minor clean up. + +v0.3c - 2016-05-28 + - Fixed compilation error. + +v0.3b - 2016-05-16 + - Fixed Linux/GCC build. + - Updated documentation. + +v0.3a - 2016-05-15 + - Minor fixes to documentation. + +v0.3 - 2016-05-11 + - Optimizations. Now at about parity with the reference implementation on 32-bit builds. + - Lots of clean up. + +v0.2b - 2016-05-10 + - Bug fixes. + +v0.2a - 2016-05-10 + - Made drflac_open_and_decode() more robust. + - Removed an unused debugging variable + +v0.2 - 2016-05-09 + - Added support for Ogg encapsulation. + - API CHANGE. Have the onSeek callback take a third argument which specifies whether or not the seek + should be relative to the start or the current position. Also changes the seeking rules such that + seeking offsets will never be negative. + - Have drflac_open_and_decode() fail gracefully if the stream has an unknown total sample count. + +v0.1b - 2016-05-07 + - Properly close the file handle in drflac_open_file() and family when the decoder fails to initialize. + - Removed a stale comment. + +v0.1a - 2016-05-05 + - Minor formatting changes. + - Fixed a warning on the GCC build. + +v0.1 - 2016-05-03 + - Initial versioned release. +*/ + +/* +This software is available as a choice of the following licenses. Choose +whichever you prefer. + +=============================================================================== +ALTERNATIVE 1 - Public Domain (www.unlicense.org) +=============================================================================== +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or distribute this +software, either in source code form or as a compiled binary, for any purpose, +commercial or non-commercial, and by any means. + +In jurisdictions that recognize copyright laws, the author or authors of this +software dedicate any and all copyright interest in the software to the public +domain. We make this dedication for the benefit of the public at large and to +the detriment of our heirs and successors. We intend this dedication to be an +overt act of relinquishment in perpetuity of all present and future rights to +this software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to <http://unlicense.org/> + +=============================================================================== +ALTERNATIVE 2 - MIT No Attribution +=============================================================================== +Copyright 2018 David Reid + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ |